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Nrf2/HO-1 signaling activation alleviates 
cigarette smoke-induced inflammation 
in chronic obstructive pulmonary disease 
by suppressing NLRP3-mediated pyroptosis
Yanan Zhang1*†, Jinxia Wang2†, Yuling Wang2 and Kai Lei2 

Abstract 

Background This study examined the effect of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 
1 (HO-1) pathway on chronic obstructive pulmonary disease (COPD) and the potential molecular mechanism.

Methods A COPD mouse model was established by cigarette smoke exposure and administered with either ML385 
or dimethyl fumarate (DMF). Airway resistance of mice was detected. IL-1β and IL-6 levels in mice alveolar lavage fluid 
were examined by enzyme-linked immunosorbent assay. Hematoxylin and eosin staining and immunohistochemi-
cal of lung tissues were utilized to detect lung injury and NLRP3 expression. DMF was used to treat COPD cell model 
constructed by exposing normal human bronchial epithelial (NHBE) cells to cigarette smoke extract. NHBE cells were 
transfected by NLRP3-expression vectors. Expression of proteins was detected by Western blot.

Results COPD mice showed the enhanced airway resistance, the inactivated Nrf2/HO-1 pathway and the overex-
pressed NLRP3, Caspase-1 and GSDMD-N proteins in lung tissues, and the increased IL-1β and IL-6 levels in alveolar 
lavage fluid. ML385 treatment augmented these indicators and lung injury in COPD mice. However, DMF interven-
tion attenuated these indicators and lung injury in COPD mice. Nrf2/HO-1 pathway inactivation and overexpression 
of NLRP3, Caspase-1 and GSDMD-N proteins were observed in COPD cells. DMF intervention activated Nrf2/HO-1 
pathway and down-regulated NLRP3, Caspase-1 and GSDMD-N proteins in COPD cells. However, NLRP3 overexpres-
sion abolished the effect of DMF on COPD cells.

Conclusion Nrf2/HO-1 pathway activation may alleviate inflammation in COPD by suppressing the NLRP3-related 
pyroptosis. Activating the Nrf2/HO-1 pathway may be an effective method to treat COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is char-
acterized by consistent airway inflammation and irrevers-
ible airflow obstruction, which is the third leading cause 
of mortality in the world [1, 2]. COPD is mainly triggered 
by the inhalation of toxic particles, especially tobacco 
smoke and polluted air [3]. Some COPD patients are 
caused by genetic factors, lung infection and malforma-
tion of lung growth and development [4, 5]. In terms of 
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pathogenesis, oxidative stress and inflammatory activa-
tion are two well-recognized factors that induce chronic 
airway inflammation and lung parenchyma destruction 
[6]. As the further understanding of COPD pathogenesis, 
some molecular targeted drugs have been demonstrated 
to exert well effects on relieving COPD, such as antioxi-
dants, cytokine-targeted drugs and some inhibitors of 
enzyme and signaling pathways [4]. However, COPD is 
still incurable, which brings serious adverse impact on 
the life quality of patients and substantial economic bur-
den for public health concern [7]. A better understand-
ing of the molecular mechanisms underlying COPD will 
be conducive to the development of effective treatment 
strategies.

Recent studies have been found that cigarette 
smoke(CS) induced reactive oxygen species (ROS) and 
inflammation response are closely related to the pyrop-
tosis which involved in the development of COPD [8, 9]. 
Pyroptosis is a type of programmed cell death mediated 
by the inflammatory caspases. The release of cell contents 
caused by pyroptosis will aggravate the inflammatory 
response to further deteriorate COPD [10]. Pyroptosis 
represents a unique cell death form usually activated by 
the NOD-like receptor protein-3 (NLRP3) inflammas-
ome and Caspase-1 [10]. The activated NLRP3 inflamma-
some can not only exacerbate the inflammatory response, 
but also can induce the hydrolysis and activation of Cas-
pase-1 to cleavage the pyroptosis effector protein gasder-
min D (GSDMD). After cleavage, GSDMD N-terminal 
domain (GSDMD-N) protein was generated and then 
inserted into the surface of the cell membrane to form 
holes, which finally causes the expansion and rupture of 
cells and the ultimately inflammatory reaction [11]. Pre-
vious study has been implied that the activated NLRP3 
can lead to the Caspase-1 mediated release of proinflam-
matory factors such as interleukin-18 (IL-18) and IL-1β 
to trigger the inflammatory outburst in COPD mice [12]. 
However, whether NLRP3 contributes the development 
of COPD by inducing pyroptosis has not yet been defini-
tively elucidated.

It has been identified that the increased level of CS 
induced ROS in COPD can exacerbate the inflammatory 
responses by directly activating the NLRP3 inflammas-
omes [13]. It is well known that the nuclear factor eryth-
roid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) 
pathway is one of the most critical intracellular pathways 
to block the reactive oxygen species. Nrf2 can exert the 
antioxidant role by enhancing the expression of HO-1 
protein [14]. Accumulating studies have indicated that 
the activated Nrf2 pathway can alleviate the inflamma-
tory response and improve lung function in COPD [15]. 
Interestingly, a recent study has been revealed that the 
Nrf2 pathway activation can relieve rheumatoid arthritis 

by suppressing the pyroptosis via blocking the activation 
of NLRP3 [16]. Unfortunately, whether Nrf2 can alleviate 
pyroptosis and inflammatory response in COPD by sup-
pressing NLRP3 remains unclear.

Therefore, this study hypothesized that the activated 
Nrf2/HO-1 pathway might alleviate inflammation in 
COPD by suppressing the NLRP3-related pyroptosis. 
This article may provide new molecular target for COPD 
treatment.

Materials and methods
Animals and construction of COPD model
C57BL/6 male mice (n = 48, 8 weeks old) were commer-
cially provided by Junke Biological Engineering (Nanjing, 
Jiangsu, China), and maintained in a non-specific path-
ogen room at 22  °C with free access to food and water. 
The day/night cycle was 12 h. Animal experiments were 
implemented after being ratified by the Ethics Com-
mittee of General Hospital of Ningxia Medical Univer-
sity (2020–276). Mice were randomly divided into four 
groups: Control group (n = 12), COPD group (n = 12), 
COPD + ML385 group (n = 12) and COPD + DMF group 
(n = 12).

Mice of the Control group inhaled room air without 
cigarette smoke (CS) exposure. Mice of the COPD group 
were subjected to the construction of COPD model by 
exposing to CS (nine cigarettes/h, 2 h per exposure, twice 
per day, six days per week) in a whole-body exposure 
chamber for 90 days [17]. The cigarettes were purchased 
from Guangdong Tobacco Industry (Guangzhou, China), 
and each cigarette contained 1.0 mg nicotine, 11 mg tar 
and 13  mg carbon monoxide per cigarette. For mice of 
the COPD + ML385 group and the COPD + DMF group, 
they firstly experienced CS exposure, and then adminis-
tered with either ML385 (an inhibitor of Nrf2, 30 mg/kg 
[18] per time, once every 2  days, for 2  weeks) or dime-
thyl fumarate (DMF) (an activator of Nrf2, 80 mg/kg [19] 
per time, once every 2  days, for 2  weeks) by gavage. In 
this research, the construction of COPD mouse model 
was done at Ningxia Medical University, and the model 
was constructed with the technical support and guidance 
of Zhonghong Boyuan Biotechnology Co., Ltd (Jiangxi, 
China).

Airway resistance detection
The lung function of mice was evaluated by detecting 
the airway resistance according to previously reported 
[20]. Briefly, after being deeply anesthetized by 60 mg/kg 
sodium pentobarbital, mice were tracheostomized with 
a catheter. Subsequently, mice were paralyzed by intra-
peritoneal injection of rocuronium (10  mg/mL, 50  mL) 
to deprive them of independent respiration. Lung func-
tion test system for laboratory animals (PFT-MR, TOW 
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Intelligent Technology Co., Ltd, Shanghai, China) was 
used for the airway resistance detection by nebuliza-
tion to a dose of methacholine 25  mg/mL in phosphate 
buffer solution. The airway resistance detection was done 
at Zhonghong Boyuan Biotechnology Co., Ltd (Jiangxi, 
China).

Enzyme‑linked immunosorbent assay (ELISA)
Mice were deeply anesthetized with 60  mg/kg sodium 
pentobarbital and then endotracheal intubated. A total 
of 600 μL normal saline was injected into the bronchus 
through the catheter to collect the alveolar lavage fluid. 
The alveolar lavage fluid experienced 10 min centrifuga-
tion at 1500  rpm/min and 4  °C. The supernatant of the 
alveolar lavage fluid was harvested [21]. The levels of 
IL-1β and IL-6 in the supernatant was detected by using 
the IL-1β ELISA kit (JK-E4183, Jingkang Biological Engi-
neering, Shanghai, China) and IL-6 ELISA kit (JK-E3123, 
Jingkang Biological Engineering, Shanghai, China). 
The detection process was carried out in line with the 
directions.

Histological staining
After being deeply anesthetized, mice were killed through 
neck dislocation to harvest the whole lung tissues. Hema-
toxylin and eosin (H&E) staining of the lung tissues 
was implemented to examine the pathological changes. 
Briefly, the lung tissues were cut into sections (5 μm) and 
sequentially stained with by hematoxylin and eosin solu-
tion by using the HE staining kit (Yubo Biotechnology, 
Shanghai, China) strictly according to the manufacturer’s 
instructions. After routinely dehydration, the sections 
were enclosed in neutral resin and observed under a light 
microscope (Olympus, Tykyo, Japan).

Immunohistochemical (IHC) staining was performed 
to research the expression of NLRP3 protein in lung tis-
sues. Briefly, the lung sections were immersed into 3% 
 H2O2 for 10 min and then boiled in citric acid buffer for 
3  min. The sections were then blocked by normal goat 
serum (Lianmai Biotechnology, Shanghai, China) for 
30  min at 37  °C, probed by rabbit anti-NLRP3 primary 
antibody (1:100, K008087P, Solarbio, Beijing, China) for 
12 h at 4 °C, and then reacted with goat anti rabbit sec-
ondary antibody (1:200, SE134, Solarbio, Beijing, China) 
for 30 min at 37  °C. After 3, 3-diaminobenzidine (DAB, 
Solarbio, Beijing, China) and hematoxylin counterstain-
ing, the sections were routinely dehydrated, sealed and 
then observed under a light microscope (Olympus, 
Tykyo, Japan).

Preparation of cigarette smoke extract (CSE)
The preparation of CSE was performed according to pre-
viously reported [22]. The cigarette smoke with a volume 

of 400  mL was collected and thoroughly mixed with 
20 mL non-serum RPMI 1640. The mixture was consid-
ered as 100% concentration of CSE. After being adjusted 
to pH 7.4, the mixture was filtered by a 0.22 μm filter. The 
absorbance value of the mixture was detected between 
0.9 and 1.2 by UV spectrophotometer (756MC/756CRT, 
Shanghai Chromatographic Instrument, Shanghai, 
China). The mixture was diluted to 5% concentration of 
CSE before using.

Cell transfection
Normal human bronchial epithelial (NHBE) cells were 
purchased from the American Type Culture Collec-
tion (ATCC, Manassas, VA, USA), and cultivated in 
RPMI1640 (Solarbio, Beijing, China) suspended with 10% 
fetal bovine serum (FBS, Solarbio, Beijing, China), 100 U/
mL streptomycin (Solarbio, Beijing, China) and 100 U/
mL penicillin (Solarbio, Beijing, China) at 37  °C and 5% 
 CO2.

NHBE cells were suspended into serum-free 
RPMI1640, plated into 6-well plates (1 ×  106 cells/mL per 
well), and transfected by either pCDNA3.1-NLRP3 vec-
tors (served as the NLRP3 group) or pCDNA3.1 vectors 
(named the NC group) via using Lipofectamine 3000 
(Thermo Fisher Scientific, Shanghai, China). The trans-
fection was implemented following the manufacturer’s 
instruction. pCDNA3.1-NLRP3 vectors and pCDNA3.1 
vectors were all commercially provided by GeneChem 
(Shanghai, China).

Establishment of COPD cell model and treatment
For the induction of the COPD cell model, NHBE 
cells were grown in the 6-well plates with serum-free 
RPMI1640 containing 5% CSE for 24 h at 37  °C and 5% 
 CO2 [22] (named the CSE group).

Moreover, RPMI1640 containing 10% FBS and 20  μM 
[19] DMF (Hengfei Biotechnology, Shanghai, China) was 
utilized to pretreat NHBE cells for 2  h at 37  °C and 5% 
 CO2. These cells then underwent incubation by serum-
free RPMI1640 containing 5% CSE for 24 h 37 °C and 5% 
 CO2. These cells were set as the CSE + DMF group.

For NHBE cells of the CSE + DMF + NLRP3 group, they 
were firstly transfected by pCDNA3.1-NLRP3 vectors 
(GeneChem, Shnghai, China) as described in the “Cell 
transfection” section, then cultured for 2 h in RPMI1640 
containing 10% FBS and 20  μM DMF at 37  °C and 5% 
 CO2, and finally incubated in serum-free RPMI1640 con-
taining 5% CSE for 24 h at 37 °C and 5%  CO2. NHBE cells 
without any treatment were used as Control group. After 
the relevant treatment, NHBE cells of each group were 
harvested for Western blot analysis.
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Western blot
Total proteins in cells and lung tissues were extracted 
by using RIPA buffer suspended with protease inhibitor 
(Yeasen Biotechnology, Shanghai, China). BCA assay 
kit (ZY80815, Zeye Biotechnology, Shanghai, China) 
was for the determination of total protein concentra-
tion. Each total protein sample (50  μg) was subjected 
to sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis, and then transferred onto polyvinylidene dif-
luoride (PVDF) membranes. The proteins were blocked 
by 5% skimmed milk (for 1  h at room temperature), 
incubated by rabbit anti-primary antibody (for 12 h at 
4  °C), and then treated by secondary antibody treat-
ment (for 2 h at room temperature). The protein blots 
were developed by enhanced chemiluminescence rea-
gent (Yeasen Biotechnology, Shanghai, China), and 
qualified by the Image J software (version 1.43, NIH, 
Bethesda, MD, USA).

The primary antibodies were: anti-Nrf2 (1:1000, 
ab92946, Abcam, Shanghai, China), anti-HO-1 (1:1000, 
ab13243, Abcam, Shanghai, China), anti-NLRP3 
(1:1000, ab263899, Abcam, Shanghai, China), anti-
Caspase-1 (1:1000, ab74279, Abcam, Shanghai, China), 
anti-GSDMD-N (1:1000, ab155233, Abcam, Shanghai, 
China), anti-β-actin (1:1000, ab8227, Abcam, Shang-
hai, China). The secondary antibody was horseradish 
peroxidase-labeled goat anti-rabbit secondary antibody 
(1:2000, 111-035-003, Yanhui Biotechnology, Shanghai, 
China).

Statistical analysis
All experiments were independently repeated in 
triplicate. The statistical analysis of data (shown as 
mean ± standard deviation) was implemented by Graph-
Pad Prism 6.0 software (GraphPad Software Inc., San 
Diego, CA, USA). Student’s t-test was utilized for the 
data comparison between two groups. One-way analy-
sis of variance (ANOVA) with Tukey’s post-hoc test was 
applied for the data comparison in more than two groups. 
P < 0.05 meant a statistically significant difference.

Results
The inactivated Nrf2/HO‑1 signaling and the enhanced 
pyroptosis and inflammatory response in COPD mice
Lung function test showed the intensified airway resist-
ance of COPD mice (the COPD group) than normal mice 
(the Control group) (P < 0.001) (Fig. 1A). Western blot of 
lung tissues exhibited the reduced expression of Nrf2 and 
HO-1 proteins in mice of the COPD group, when com-
pared to the Control group (P < 0.05, P < 0.001) (Fig. 1B). 
Simultaneously, the expression of pyroptosis-related pro-
teins, including NLRP3, Caspase-1 and GSDMD-N, was 
explored. As a result, the elevated expression of NLRP3, 
Caspase-1 and GSDMD-N proteins was occurred in the 
lung tissues of the COPD group relative to the Control 
group (P < 0.01, P < 0.001) (Fig.  1C). In the alveolar lav-
age fluid, higher levels of IL-1β and IL-6 were observed in 
mice of the COPD group, in comparison to the Control 
group (P < 0.001) (Fig.  1D). It suggested that the Nrf2/

Fig. 1 The inactivated Nrf2/HO-1 pathway and the enhanced pyroptosis and inflammatory response in COPD mice. A Lung function test revealed 
the enhanced airway resistance of COPD mice. B, C Western blot of lung tissues indicated the inactivated Nrf2/HO-1 pathway (B) and the enhanced 
expression of NLRP3 and pyroptosis-related proteins (C) in COPD mice. D ELISA of the alveolar lavage fluid implied the increased level 
of proinflammatory factors (IL-1β and IL-6) in COPD mice. *P < 0.05, **P < 0.01 and ***P < 0.001 vs. Control group
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HO-1 pathway was inactivated and the pyroptosis and 
inflammatory response was augmented in COPD mice.

The activated Nrf2/HO‑1 pathway relieved the lung injury 
and inflammatory response in COPD mice
Next, we used either ML385 (an inhibitor of the Nrf2/
HO-1 pathway) or DMF (an activator of the Nrf2/HO-1 
pathway) to treat COPD mice. As presented in Fig.  2A, 
the lower expression of HO-1 protein was occurred 
in the lung tissues of COPD mice than normal mice 
(P < 0.01). However, matched to the COPD group, mice 
of the COPD + ML385 group expressed lower HO-1 
protein in the lung tissues (P < 0.001), whereas mice of 
the COPD + DMF group expressed higher HO-1 protein 
(P < 0.001). This revealed that the Nrf2/HO-1 pathway 
activity was effectively regulated in lung tissues of COPD 
mice by ML385 or DMF treatment.

H&E staining of the lung tissues showed the intensi-
fied lung injury and inflammatory infiltration in mice of 
the COPD group when compared to the Control group. 
In comparison to the COPD group, mice lung injury and 
inflammatory infiltration of the COPD + ML385 group 
was augmented but the COPD + DMF group was relieved 
(Fig. 2B). Additionally, the enhanced airway resistance of 
mice in the COPD group was observed when relative to 
the Control group (P < 0.001). ML385 treatment signifi-
cantly exacerbated the airway resistance of COPD mice 
(P < 0.01), while DMF intervention remarkably attenuated 
it (P < 0.01) (Fig.  2C). ELISA of the alveolar lavage fluid 
exhibited the increased levels of IL-1β and IL-6 in COPD 
mice than normal mice (P < 0.001). Interestingly, ML385 
treatment intensified the levels of IL-1β and IL-6 in 
mice alveolar lavage fluid (P < 0.01), but DMF treatment 
showed the opposite effect (P < 0.01) (Fig.  2D). All of 

Fig. 2 The activated Nrf2/HO-1 pathway relieved the lung injury and inflammatory response in COPD mice. A Western blot of lung tissues 
indicated the inactivated Nrf2/HO-1 pathway by ML385 treatment and activated Nrf2/HO-1 pathway by DMF intervention in COPD mice. B H&E 
staining of the lung tissues suggested the relieved lung injury and inflammatory infiltration by activating the Nrf2/HO-1 pathway in COPD mice. C 
Lung function test revealed the reduced airway resistance by activating the Nrf2/HO-1 pathway in COPD mice. D ELISA of the alveolar lavage fluid 
revealed the decreased proinflammatory factors (IL-1β and IL-6) by activating the Nrf2/HO-1 pathway in COPD mice. **P < 0.01 and ***P < 0.001 vs. 
Control group. ## P < 0.01 and ### P < 0.001 vs. COPD group
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these data implied that the activation of the Nrf2/HO-1 
pathway could relieve the lung injury and inflammatory 
response in COPD mice.

The activated Nrf2/HO‑1 pathway suppressed 
the pyroptosis in lung tissues of COPD mice
IHC staining of the lung tissues showed the intensi-
fied NLRP3 expression in COPD mice than normal 
mice. ML385 treatment enhanced the expression of 
NLRP3 in lung tissues of COPD mice. However, DMF 
intervention exerted the opposite effect, which attenu-
ated NLRP3 expression in lung tissues of COPD mice 
(Fig.  3A). Results of Western blot presented the higher 
expressed Caspase-1 and GSDMD-N proteins in COPD 
mice than normal mice (P < 0.001). Interestingly, ML385 
treatment further increased the expression of Caspase-1 
and GSDMD-N proteins in lung tissues of COPD mice 
(P < 0.01). Conversely, DMF intervention diminished the 
expression of Caspase-1 and GSDMD-N proteins in lung 
tissues of COPD mice (P < 0.05, P < 0.01) (Fig. 3B). Thus, 
the activated Nrf2/HO-1 pathway could suppress the 
pyroptosis in lung tissues of COPD mice.

NLRP3 overexpression abolished the suppression 
of the activated Nrf2/HO‑1 pathway on COPD cell 
pyroptosis
To overexpress NLRP3, this study transfected 
pCDNA3.1-NLRP3 vectors into NHBE cells (named the 
NLRP3 group). NHBE cells transfected by pCDNA3.1 
vectors were utilized as the NC group, and those with-
out transfection were regarded as the Control group. 
As shown in Fig.  4A, pCDNA3.1-NLRP3 vectors were 
successfully transfected into NHBE cells, as demon-
strated by the higher expression of NLRP3 protein in 
the NLRP3 group relative to the Control group and 
the NC group (P < 0.001). Western blot displayed the 
lower expressed HO-1 protein and the higher expressed 
NLRP3 protein in NHBE cells of the CSE group when 
compared to the Control group (P < 0.001). A dis-
tinctly higher expressed HO-1 protein was occurred 
in NHBE cells of the CSE + DMF group (P < 0.01) 
and the CSE + DMF + NLRP3 group relative to the 
CSE group (P < 0.01). Considering NLRP3 protein, 
it decreased in the CSE + DMF group (P < 0.05) but 
increased in the CSE + DMF + NLRP3 group (P < 0.01), 
when matched to NHBE cells of the CSE group. Mean-
while, in comparison to the CSE + DMF group, NHBE 
cells of the CSE + DMF + NLRP3 group showed the 
enhanced expression of NLRP3 protein (P < 0.001) 
(Fig.  4B). Additionally, higher expression of Caspase-1 

Fig. 3 The activated Nrf2/HO-1 pathway suppressed the pyroptosis in lung tissues of COPD mice. A IHC staining of the lung tissues revealed 
that the activated Nrf2/HO-1 pathway suppressed NLRP3 expression in COPD mice. B Western blot illustrated that the activated Nrf2/HO-1 pathway 
reduced the expression of pyroptosis-related proteins (Caspase-1 and GSDMD-N) in lung tissues of COPD mice. ***P < 0.001 vs. Control group. # 
P < 0.05 and ## P < 0.01 vs. COPD group
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and GSDMD-N proteins was examined in NHBE 
cells of the CSE group relative to the Control group 
(P < 0.001). Matched to NHBE cells of the CSE group, 
lower expressed Caspase-1 and GSDMD-N proteins 
in the CSE + DMF group (P < 0.05, P < 0.05) but higher 
expressed Caspase-1 and GSDMD-N proteins in the 
CSE + DMF + NLRP3 group were presented (P < 0.05, 
P < 0.01). In contrast to the CSE + DMF group, NHBE 
cells of the CSE + DMF + NLRP3 group expressed dis-
tinctly higher Caspase-1 and GSDMD-N proteins 
(P < 0.01) (Fig.  4C). All of these data illustrated that 
NLRP3 overexpression counteracted the suppression 
of the activated Nrf2/HO-1 pathway on COPD cell 
pyroptosis.

Discussion
The present work demonstrated that inactivated Nrf2/
HO-1 pathway and the activated NLRP3, Caspase-1 and 
GSDMD-N expression in COPD mouse model and cell 
model. Mechanistic research indicated that the activated 
Nrf2/HO-1 pathway might alleviate inflammation in 
COPD by suppressing the NLRP3-mediated pyroptosis.

Nrf2 is one of the main transcription factors, which 
exerts the anti-oxidative stress role by triggering the 
expression of the downstream anti-oxidative genes [23]. 
Previous studies have been identified that the activated 
Nrf2 possesses the function of restrict the oxidative 
stress and inflammatory reaction by activating its down-
stream HO-1 [24, 25]. As we know, HO-1 is an important 

Fig. 4 NLRP3 overexpression abolished the suppression of the activated Nrf2/HO-1 pathway on COPD cell pyroptosis. A Western blot revealed 
the successfully pCDNA3.1-NLRP3 vector-transfected NHBE cells. B Western blot indicated that the pCDNA3.1-NLRP3 vector-transfection reversed 
the suppression of the activated Nrf2/HO-1 pathway on NLRP3 expression in COPD cells. C Western blot implied that NLRP3 overexpression 
abrogated the suppression of activated Nrf2/HO-1 pathway on the expression of pyroptosis-related proteins (Caspase-1 and GSDMD-N) in COPD 
cells. ***P < 0.001 vs. Control group. # P < 0.05 and ## P < 0.01 vs. CSE group. ^^ P < 0.01 and ^^^ P < 0.01 vs. CSE + DMF group
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antioxidant molecule possessing anti-oxidative and anti-
inflammatory functions [26]. The Nrf2/HO-1 pathway 
is thus considered to be a crucial antioxidant defense 
system against multiple diseases [27]. The suppressed 
expression and activity of Nrf2 and HO-1 has been 
revealed in COPD mouse model [23] and some drugs, 
such as metformin and alantolactone, have been shown 
to relieve COPD by activating the Nrf2/HO-1 pathway 
[22, 28]. Similarly, this study revealed the inactivated 
Nrf2/HO-1 pathway in COPD mice.

More interestingly, this paper discovered the increased 
expression of NLRP3 in the lung tissues of COPD mice. 
NLRP3 is one of the key inflammasome sensors. It can 
trigger the activation of Caspase-1 through assembling 
an intact inflammasome complex, ultimately induc-
ing the release of pro-inflammatory cytokines, such as 
IL-1β, tumor necrosis factor α, IL-18 and IL-6 [29, 30]. 
Nrf2 has ben researched to be required for the NLRP3 
activation [31]. In some inflammation-related diseases, 
the suppressed Nrf2/HO-1 pathway has been discovered 
to stimulate the activation of NLRP3 to exacerbate the 
inflammatory response [26, 31, 32]. The activated NLRP3 
has been identified in COPD, which is essential for the 
progression of COPD [33, 34]. However, whether the 
Nrf2/HO-1 pathway mediates the NLRP3 expression to 
regulating the development of COPD has yet to be elu-
cidated. In this study, the activated Nrf2/HO-1 pathway 
was firstly demonstrated to suppress the expression of 
NLRP3 to relieve the inflammatory response and lung 
injury in COPD.

Previously study has been researched that the acti-
vated NLRP3 can trigger the pyroptosis via inducing 
Caspase-1 to induce the inflammatory response in some 
diseases [35, 36]. In the CSE-induced COPD cell model, 
the activated NLRP3/Caspase-1 pathway has been sug-
gested to induce the pyroptosis to trigger the inflamma-
tory response [37]. GSDMD-N is the ultimate executor of 
pyroptosis and pyroptosis often occurs upon Caspase-1 
activation, because the activated Caspase-1 can cleavage 
GSDMD protein into GSDMD-N to form holes on the 
cell membrane to induce the release of proinflammatory 
factors [38]. The activated NLRP3/Caspase-1/GSDMD 
pathway has been implied to facilitate the development 
of several diseases by enhancing the pyroptosis [39, 40]. 
Similarly, this research revealed the activated NLRP3/
Caspase-1/GSDMD-N pathway in the COPD mouse 
model and cell model. More importantly, this paper dem-
onstrated that the activated Nrf2/HO-1 pathway could 
relieve the lung injury in COPD mice and suppress the 
expression of NLRP3, Caspase-1 and GSDMD-N and 
the release of proinflammatory factors (IL-1β and IL-6) 
in COPD mouse model and cell model. Conversely, after 
the Nrf2/HO-1 pathway being inactivated, an opposite 

results were discovered. Taken together, the activated 
Nrf2/HO-1 pathway might attenuate the lung injury and 
inflammatory response in COPD by inhibiting the pyrop-
tosis via suppressing the NLRP3/Caspase-1/GSDMD-N.

Conclusion
This study revealed the remitting effect of the activated 
Nrf2/HO-1 pathway in COPD. The activated Nrf2/HO-1 
pathway might relieve the inflammatory response in 
COPD by suppressing the NLRP3-mediated pyroptosis. 
This mechanism was firstly elucidated in COPD. Acti-
vating the Nrf2/HO-1 pathway may be a promising way 
to treat COPD. In the future research, attention should 
be devoted to developing drugs that target activating the 
Nrf2/HO-1 pathway.
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