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Abstract
Background Several studies to date have reported on the development of positron emission tomography (PET)/
computed tomography (CT)-based models intended to effectively distinguish between benign and malignant 
pulmonary nodules (PNs). This meta-analysis was designed with the goal of clarifying the utility of these PET/CT-based 
conventional parameter models as diagnostic tools in the context of the differential diagnosis of PNs.

Methods Relevant studies published through September 2023 were identified by searching the Web of Science, 
PubMed, and Wanfang databases, after which Stata v 12.0 was used to conduct pooled analyses of the resultant data.

Results This meta-analysis included a total of 13 retrospective studies that analyzed 1,731 and 693 malignant and 
benign PNs, respectively. The respective pooled sensitivity, specificity, PLR, and NLR values for the PET/CT-based 
studies developed in these models were 88% (95%CI: 0.86–0.91), 78% (95%CI: 0.71–0.85), 4.10 (95%CI: 2.98–5.64), 
and 0.15 (95%CI: 0.12–0.19). Of these endpoints, the pooled analyses of model sensitivity (I2 = 69.25%), specificity 
(I2 = 78.44%), PLR (I2 = 71.42%), and NLR (I2 = 67.18%) were all subject to significant heterogeneity. The overall area 
under the curve value (AUC) value for these models was 0.91 (95%CI: 0.88–0.93). When differential diagnosis was 
instead performed based on PET results only, the corresponding pooled sensitivity, specificity, PLR, and NLR values 
were 92% (95%CI: 0.85–0.96), 51% (95%CI: 0.37–0.66), 1.89 (95%CI: 1.36–2.62), and 0.16 (95%CI: 0.07–0.35), with all 
four being subject to significant heterogeneity (I2 = 88.08%, 82.63%, 80.19%, and 86.38%). The AUC for these pooled 
analyses was 0.82 (95%CI: 0.79–0.85).

Conclusions These results suggest that PET/CT-based models may offer diagnostic performance superior to that of 
PET results alone when distinguishing between benign and malignant PNs.
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Introduction
Pulmonary nodules (PNs) are small (≤ 3 cm) lesions sur-
rounded by lung parenchymal tissue that are not trans-
parent and not the results of atelectasis, mediastinal 
lymphadenopathy, or pleural effusion [1–3]. In cases 
where these nodules are > 6  mm in size, computed 
tomography (CT)-based routine follow-up is warranted 
[4], with a 1.1-fold increase in the risk of PN malignancy 
with each 1  mm increase in diameter [5]. Analyses of 
patient clinical data and CT imaging findings are the 
most commonly used approach to PN diagnosis [6–8].

CT features often indicative of PN malignancy include 
CT bronchus sign, vascular convergence sign, pleural 
retraction, lobulation, and spiculated sign [6–8]. Clinical 
risk factors for PN malignancy include more advanced 
age, elevated serum levels of tumor marker proteins, and 
a history of smoking [6, 9]. Researchers have devised an 
array of predictive models based on these clinical and 
imaging features with the goal of more reliably identi-
fying malignant PNs [6–8]. Most CT-derived imaging 
features, however, are classified as binary variables that 
can be inconsistently identified based on the experience 
level of the attending physician. More reliable quantita-
tive imaging strategies are thus needed to minimize this 
potential for bias, thereby increasing the odds of accu-
rately diagnosing PNs.

18F-fludeoxyglucose (18F-FDG) positron emission 
tomography (PET)/CT scans have emerged as a powerful 
approach to PN diagnosis, with standardized maximum 
uptake values (SUVmax) serving as a proxy for radiotracer 
uptake on imaging scans [10]. Given these advantages, 
researchers have also incorporated PET/CT imaging 
parameters into predictive models designed to diagnose 
PNs in an effort to achieve superior accuracy [11–23]. 
However, there has been substantial variability among 
studies with respect to the purported diagnostic perfor-
mance of these individual PET/CT-based models [11–
23]. There thus remains the pressing need for large-scale 
analyses capable of systematically clarifying the diagnos-
tic utility of the models developed to date.

Accordingly, the present meta-analysis was conducted 
to clarify the diagnostic performance of PET/CT-based 
models when used for the differential diagnosis of poten-
tially malignant PNs.

Materials and methods
Study selection
Studies of potential relevance were identified by search-
ing the Web of Science, PubMed, and Wanfang databases 
for all articles published through September 2023 based 
on the following search strategy: (((((positron emission 
tomography) OR (PET/CT)) AND (model)) AND ((lung) 
OR (pulmonary))) AND (nodule)) AND ((((differential) 
OR (diagnosis)) OR (probability)) OR (predictive)). This 

meta-analysis was registered at https://inplasy.com/ (No. 
INPLASY2023100042).

To be eligible for inclusion, studies had to be: (1) 
focused on the differential diagnosis of malignant or 
benign PNs, (2) centered on the development or testing 
of PET/CT-based models that were provided within the 
study, and (3) transparent with respect to the true posi-
tive (TP), true negative (TN), false positive (FP), and false 
negative (FN) values associated with the tested models. 
provided. Case reports, non-human studies, and reviews 
were excluded from this study.

Data extraction and quality analyses
Two investigators were responsible for independently 
extracting pertinent data from these studies, including 
baseline study data, baseline patient data, and the results 
of diagnostic analyses. Any discrepancies were resolved 
by a third investigator. The QUADAS-2 tool was used to 
gauge risk of bias [24].

Definitions
TP results were those for which both PET/CT-based 
models and final diagnoses were indicative of PN malig-
nancy, whereas FP results were those for which PET/CT-
based models predicted that a given lesion was malignant 
but it was ultimately found to be benign. Conversely, TN 
results were those for which both PET/CT-based mod-
els and final diagnoses indicated that a PN was benign, 
whereas FN results were those for which PET/CT-based 
models predicted that a given lesion was benign but it 
was ultimately found to be malignant.

Meta-analysis
Stata v 12.0 (Stata Corporation, TX, USA) was used to 
compute pooled sensitivity, specificity, diagnostic score, 
negative likelihood ratio (NLR), positive likelihood ratio 
(PLR), and summary receiver operating characteristic 
(SROC) curves for this study. A given predictive model 
was considered to exhibit high diagnostic performance 
if it exhibited an NLR < 0.2 or a PLR > 5. An area under 
the SROC curve (AUC) value greater than 0.8 was also 
considered to indicate a high degree of diagnostic utility 
[3]. RevMan v 5.3 was used to compare pooled SUVmax 
values between benign and malignant PNs. I2 values were 
employed to gauge the degree of heterogeneity, with 
I2 > 50% indicating that such heterogeneity was signifi-
cant. The possibility of publication bias was assessed with 
Deeks’ funnel plots, and P < 0.05 served as the threshold 
for defining statistical significance.

Results
Study selection
The initial search strategy returned 526 studies of which 
13 were found to be relevant and incorporated into the 

https://inplasy.com/
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final analyses (Fig.  1). These 13 studies were retrospec-
tive in design, and included 11 and 2 studies respectively 
conducted in China and Spain. For further study-specific 
details, see Table 1.

A total of 1,731 and 693 malignant and benign PNs 
were ultimately included in these studies. Numbers 
of predictors included in individual predictive models 

ranged from 2 to 7 (Table  2). Except for PET/CT, age 
was the predictor in 12 of the 13 models. The common 
malignant CT features, such as lobulation, spiculation, 
and pleural retraction, occurred in 6, 5, and 3 models. 
Different models could provide different performances 
and therefore a different number of TP, TN, FP, FN. 

Table 1 Characteristics of studies included in meta-analysis
Studies Year Country Blind Sample size Male/Female Age (y) Malignant/Benign Reference standard
Chen [11] 2013 China Unclear 109 55/54 24–80 67/42 S, B
Cheng [12] 2019 China Unclear 362 194/168 22–68 291/71 S, B
Guo [13] 2019 China Unclear 312 172/140 30–89 215/97 S, B
Honguero Martínez [14] 2021 Spain Unclear 305 225/80 29–86 258/47 S, B
Lin [15] 2015 China Yes 186 Not given Not given 123/63 S, B
Liu [16] 2016 China Unclear 164 103/61 Mean 58 104/60 S, B, F
Ma [17] 2020 China Unclear 161 91/70 27–85 131/30 S, B
Pei [18] 2015 China Unclear 156 92/64 Mean 57.6 85/71 S, B
Tian [19] 2012 China Unclear 105 71/34 Mean 57 61/44 S, B
van Gómez López [20] 2015 Spain Unclear 55 45/10 Mean 61 40/15 S
Wang [21] 2018 China Yes 177 95/82 26–85 119/58 S, B
Xiang [22] 2016 China Yes 110 71/39 Mean 59 80/30 S
Zhang [23] 2021 China Unclear 222 All males Mean 68 157/65 S, B, F
B: biopsy; F: follow-up; S: surgery

Fig. 1 The study selection process for this meta-analysis
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For details regarding raw TP, FP, TN, and FN data, see 
Table 3.

Bias analyses
The potential for bias was examined using the QUA-
DAS-2 tool (Fig. 2). This approach revealed that 9 of the 
13 studies did not indicate whether patients were con-
secutively enrolled [12, 15–20, 22, 23], and a partially 
overlapping set of 9 studies did not provide sufficient 

clarity regarding blinding status [11–14, 16–20]. Refer-
ence standards were used for diagnostic confirmation in 
all studies.

PET/CT-based model diagnostic performance
TP, FP, TN, and FN data for PET/CT-based models were 
provided in all 13 studies. The respective pooled sensi-
tivity, specificity, PLR, and NLR values for these mod-
els were 88% (95%CI: 0.86–0.91, Fig.  3a), 78% (95%CI: 
0.71–0.85, Fig. 3b), 4.10 (95%CI: 2.98–5.64, Fig. 3c), and 
0.15 (95%CI: 0.12–0.19, Fig. 3d), with all four being sub-
ject to significant heterogeneity (I2 = 69.25%, 78.44%, 
71.42%, and 67.18% respectively). The AUC value was 
0.91 (95%CI: 0.88–0.93, Fig.  3e), and the SROC curve 
deviated substantially from a shoulder-like appearance, 
indicating that a threshold effect is unlikely to influence 
these results. A Fagan plot with a 20% pre-test probability 
exhibited respective 51% and 4% post-test PLR and NLR 
probabilities (Fig.  3f ), with no evidence of significant 
publication bias (P = 0.996).

The diagnostic utility of PET results alone
Raw TP, FP, TN, and PN data for diagnoses made solely 
based on PET-derived SUVmax values were provided 
by 6 studies [14, 16, 17, 20–22]. The respective pooled 
sensitivity, specificity, PLR, and NLR values for diagno-
ses made based only on these values were 92% (95%CI: 
0.85–0.96, Fig. 4a), 51% (95%CI: 0.37–0.66, Fig. 4b), 1.89 
(95%CI: 1.36–2.62, Fig. 4c), and 0.16 (95%CI: 0.07–0.35, 
Fig.  4d), with all four values again being subject to sig-
nificant heterogeneity (I2 = 88.08%, 82.63%, 80.19%, 
and 86.38%). The corresponding AUC value was 0.82 
(95%CI: 0.79–0.85, Fig.  4e), and the appearance of the 
SROC curve did not reveal any evidence of a thresh-
old effect. A Fagan plot with a 20% pre-test probability 
exhibited respective 32% and 4% post-test PLR and NLR 

Table 2 The details of each predictive model
Number of 
factors

Items of predictive factors

Chen [11] 7 Age, density, lesion-lung border, lobula-
tion, concentrated vessel, pleural retrac-
tion, PET

Cheng [12] 6 Age, vacuole, lobulation, calcification, 
diameter, PET

Guo [13] 7 Age, diameter, smoking history, spicula-
tion, lobulation, cavity, PET

Honguero 
Martínez 
[14]

4 Age, sex, malignant history, PET

Lin [15] 5 Age, lobulation, concentrated vessel, 
pleural retraction, PET

Liu [16] 3 Age, spiculation, PET
Ma [17] 4 Age, concentrated vessel, calcification, PET
Pei [18] 7 Age, sex, size, spiculation, PET, border, 

concentrated vessel
Tian [19] 6 Age, smoking, gender, diameter, PET, 

spiculation
van Gómez 
López [20]

2 Age, PET

Wang [21] 5 Age, lobulation, concentrated vessel, 
pleural retraction, PET

Xiang [22] 5 Age, PET, lobulation, calcification, 
spiculation

Zhang [23] 3 Calcification, concentrated vessel, PET
PET: positron emission tomography

Table 3 Raw Data of diagnostic performance of studies included in this meta-analysis
Predictive model PET alone
TP FP FN TP TP FP FN TP

Chen [11] 168 17 49 67 - - - -
Cheng [12] 259 12 32 56 - - - -
Guo [13] 165 22 50 75 - - - -
Honguero Martínez [14] 235 23 23 24 244 36 14 11
Lin [15] 108 12 15 51 - - - -
Liu [16] 95 12 9 48 98 21 6 39
Ma [17] 108 4 23 26 129 7 2 23
Pei [18] 79 3 6 68 - - - -
Tian [19] 55 7 6 37 - - - -
van Gómez López [20] 35 8 5 7 32 7 8 8
Wang [21] 106 20 13 38 103 33 16 25
Xiang [22] 69 6 11 24 201 38 38 36
Zhang [23] 138 9 19 56 - - - -
FN: false negative; FP: false positive; PET/CT: positron emission tomography/computed tomography; TN: true negative; TP: true positive
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Fig. 2 (A) The quality assessment of each included study. (B) The summary of the quality assessment
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probabilities (Fig.  4f ), with no evidence of significant 
publication bias (P = 0.566).

SUVmax values
The mean SUVmax values for benign and malignant 
PNs were reported in 4 total studies [13, 15, 20, 21]. 

Significantly higher pooled SUVmax values were observed 
for malignant PNs as compared to benign nodules 
(P < 0.00001, Fig.  5a), although significant heterogeneity 
was detected (I2 = 60%). Sensitivity analyses suggested 
that the study conducted by Liu et al. [16] was the great-
est source of heterogeneity, but even with the removal of 

Fig. 3 The results of (A) sensitivity, (B) specificity, (C) PLR, (D) NLR, (E) SROC, and (F) Fagan diagram for PET/CT based model
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Fig. 4 The results of (A) sensitivity, (B) specificity, C) PLR, (D) NLR, (E) SROC, and (F) Fagan diagram for PET/CT alone
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this study the pooled SUVmax of malignant PNs remained 
higher than that of benign PNs (P < 0.00001). Funnel plots 
revealed a low risk of publication bias (Fig. 5b).

Discussion
The present meta-analysis explored the performance of 
PET/CT-based models as tools for the differential diag-
nosis of PNs. The overall pooled AUC value of 0.91 was 
indicative of excellent predictive performance in this 
context, while the low NLR value (0.15) demonstrates 
that these PET/CT-based models can satisfactorily diag-
nose benign PNs when predictive scores fall below the 
established cut-off value. As the pooled PLR value of 4.10 
was less than 5, however, this suggests that the diagnos-
tic ability of these PET/CT-based models for malignant 
PNs is only moderate when predictive scores fall above 
the established cut-off value.

PET/CT imaging can yield both CT images that offer 
morphological insight regarding a given lesion, as well 
as PET images capable of quantifying glucose metabo-
lism rates. PET scans thus enable the detection of malig-
nant lesions composed of highly metabolically active 
cells, given that they take up 18F-FDG and glucose at 
higher rates than do benign cells [25, 26]. In the present 

meta-analysis, a significantly higher pooled SUVmax value 
was exhibited by malignant PNs as compared to benign 
PNs.

The diagnostic utility of individual CT features is rela-
tively limited when evaluating PNs. In prior meta-anal-
yses assessing the diagnostic performance of lobulation 
sign, calcification, and spiculation as approaches to dif-
ferential diagnosis of PNs, the AUC values were between 
0.65 and 0.76 [1–3]. The AUC for the diagnostic utility of 
PET alone in the present study was 0.82, but the pooled 
specificity was just 51%. High levels of 18F-FDG uptake 
can also be observed for benign inflammatory, infectious, 
or granulatomous disease-associated lesions [27], con-
tributing to a relatively low PLR of 1.89. The comparison 
of diagnostic performance between the predictive model 
and PET alone suggests that the diagnostic ability of PET 
alone is limited when evaluating PNs, emphasizing the 
need to combine multiple signs in an effort to improve 
the performance of diagnostic models.

There are many advantages to utilizing mathematical 
models when diagnosing PNs. Notably, these models can 
ensure that patients can be assessed in a more objective 
manner, yielding a predictive score reflective of the odds 
of PN malignancy. In addition, these models can provide 
risk coefficients for all predictive factors incorporated 

Fig. 5 (a) The forest plot of the pooled SUVmax values between malignant and benign PNs. (b) The assessment of the publication bias of SUVmax values
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therein, allowing researchers to directly establish the rel-
ative risk associated with each incorporated factor.

The Mayo model was the first predictive model 
designed to distinguish between benign and malignant 
PNs [28]. Herder et al. [29] combined the Mayo model 
with PET results to establish the first PET/CT-based 
model, which exhibited an AUC of 0.92 in line with the 
pooled AUC measured in the present meta-analysis. This 
AUC value was also higher than that of the Mayo model 
(0.79) or PET scanning results alone (0.88) [29].

In addition to imaging features, predictive models can 
also incorporate levels of tumor markers or particu-
lar clinical features [3]. More advanced age and higher 
serum concentrations of carcinoembryonic antigen have 
both been linked to a greater risk of PN malignancy [3, 9]. 
While age was a factor that was included in most predic-
tive analyses analyzed herein, none incorporated tumor 
markers. Additional research focused on developing new 
PET/CT-based predictive models incorporating clinical 
characteristics, imaging features, and tumor marker lev-
els are thus warranted to improve diagnostic accuracy.

This meta-analysis is subject to certain limitations. For 
one, as all included studies were retrospective in design, 
these findings are subject to a high risk of bias. Moreover, 
many of the included studies failed to indicate whether 
patients were recruited consecutively, and this oversight 
may have influenced the diagnostic performance of the 
models developed in individual studies. Next, different 
models contained different predictive factors, and the 
diagnostic results were not only influenced by PET/CT, 
but also influenced by other factors. However, different 
models also have the similarity that the predictive models 
can provide the comprehensive and quanitative analysis 
for the PNs. Lastly, the included studies did not utilize 
consistent reference standards, again potentially impact-
ing the resultant diagnostic accuracy.

Conclusions
In summary, PET/CT-based models appear to exhibit 
promising diagnostic performance when used to distin-
guish between benign and malignant PNs, outperforming 
PET-derived SUVmax values alone when employed for the 
differential diagnosis of PNs.
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