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Abstract

Background: T-wave alternans (TWA) provides a noninvasive and clinically useful marker for the risk of sudden
cardiac death (SCD). Current most widely used TWA detection algorithms work in two different domains: time and
frequency. The disadvantage of the spectral analytical techniques is that they treat the alternans signal as a
stationary wave with a constant amplitude and a phase. They cannot detect non-stationary characteristics of the
signal. The temporal domain methods are sensitive to the alignment of the T-waves. In this study, we sought to
develop a robust combined algorithm (CA) to assess T-wave alternans, which can qualitatively detect and
quantitatively measure TWA in time domain.

Methods: The T wave sequences were extracted and the total energy of each T wave within the specified
time-frequency region was calculated. The rank-sum test was applied to the ranked energy sequences of T waves
to detect TWA qualitatively. The ECG containing TWA was quantitatively analyzed with correlation method.

Results: Simulation test result proved a mean sensitivity of 91.2% in detecting TWA, and for the SNR not less than
30 dB, the accuracy rate of detection achieved 100%. The clinical data experiment showed that the results from this
method vs. spectral method had the correlation coefficients of 0.96.

Conclusions: A novel TWA analysis algorithm utilizing the wavelet transform and correlation technique is
presented in this paper. TWAs are not only correctly detected qualitatively in frequency domain by energy value of
T waves, but the alternans frequency and amplitude in temporal domain are measured quantitatively.
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Background
Sudden cardiac death (SCD), frequently ascribed to sus-
tained ventricular arrhythmias, is one of the leading
causes of mortality. American Heart Association claims
approximately 350,000 lives annually in the US (approxi-
mately one every 1.7 minutes). Accurate identification of
patients at increased risk for sustained ventricular
arrhythmias is critical for the development of effective
strategies to prevent SCD.
Traditionally, left ventricular ejection fraction was used

to identify high-risk individuals and to assess the utility of
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reproduction in any medium, provided the or
the prophylactic administration of antiarrhythmic agents
[1]. However, this strategy has no survival benefit [2].
There is now evidence that implantation of an internal
cardioverter-defibrillator (ICD) in patients who are yet to
experience sustained ventricular arrhythmias can improve
survival [3-5]. But the costs and risks of indiscriminate
application of ICD therapy may be unacceptably high.
Some of the non-invasive tests related to high-risk SCD
include ventricular late potentials and QT dispersion.
However, the positive predictive value of these tests is too
low to consider them as sufficient to make a decision about
specific treatment, especially defibrillator implantation.
The challenge is to develop new selective non-invasive
methods which will allow the identification of high-risk
patients before a major arrhythmic event occurs.
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iginal work is properly cited.

mailto:xkwan@gdut.edu.cn
mailto:yjzeng@bipu.edu.cn
http://creativecommons.org/licenses/by/2.0


Wan et al. Journal of Cardiothoracic Surgery 2013, 8:7 Page 2 of 7
http://www.cardiothoracicsurgery.org/content/8/1/7
Recently, the T-wave alterenans (TWA) has been consi-
dered as one of the most promising markers, which allows
identification patients at an increased risk for ventricular
arrhythmia [6-13]. TWA is a phenomenon appearing in
the ECG as a consistent fluctuation in the repolarization
morphology on an “every-other-beat” basis (2:1 behavior).
This fluctuation refers to a beat-to-beat variability in the
amplitude of the T wave or ST segment. Numerous clinical
studies have demonstrated the link between these oscilla-
tions and ventricular arrhythmias.
Current most widely used TWA detection algorithms

work in two different domains: time and frequency.
Energy Spectral Method published by Adam et al. in

1981 [7] is the first quantitative studies relating TWA
with myocardial instability. After that many researchers
have presented many different algorithms based on it,
such as Spectral Method (SM) [8], Complex Demodula-
tion [9], and Karhunen-Loève Transform [10]. The spec-
tral analytical techniques permit the registration of the
alternans along the T wave by analysis of the power
spectrum for each sample point. The disadvantage of the
methods is that they treat the alternans signal as a sta-
tionary wave with a constant amplitude and a phase,
which is not true in general. They cannot detect non-
stationary characteristics of the signal.
The typical time-domain methods include Modified

Moving Average method [11] and Correlation Method
[12]. Time domain methods has also been used on Holter
data, and it can detect TWA in short-time, non-stationary
electrocardiogram (ECG) signal. But the higher quality of
ECG signal is required, and the reliability and robustness
of the algorithms need be improved further.
Besides above reported methods, several nonlinear

methods and statistical methods of detection TWA are
also presented, such as Laplacian Likelihood Ratio
Method, Statistical Tests Method, Poincaré Mapping
Method. The use of the methods as an immediate pre-
dictor of adverse cardiac events has, as far as the authors
are aware, not been reported to date.
The wavelet transform has emerged over recent years

as a powerful time–frequency analysis and signal coding
tool favored for the interrogation of complex nonstation-
ary signals. The continuous wavelet transform (CWT)
has been used successfully in the processing of ECG sig-
nals, and offers significant advantages—in particular the
preservation of feature-specific locations [13]. And Inaki
used a wavelet transform-based methodology to detect
the TWA in ECG qualitatively [14].

The continuous wavelet transform (CWT)
The continuous wavelet transform is a time–frequency
analysis method. It differs from the traditional short time
Fourier transform by allowing arbitrarily high lo
calization in time of high frequency signal features. The
CWT is able to decompose a signal into different fre-
quency components and one can study each of them
with a different resolution, and a large selection of loca-
lized waveforms can be employed as long as they satisfy
predefined mathematical criteria (described below). The
wavelet transform of a continuous time signal, x(t), is
defined as:

T a; bð Þ ¼ 1ffiffiffi
a

p
Z þ1

�1
x tð ÞΨ � t � b

a

� �
dt ð1Þ

where Ψ*(t) is the complex conjugate of the analysing
wavelet function Ψ*(t), α is the dilationparameter of the
wavelet and b is the location parameter of the wavelet.
The contribution to the signal energy at the specific α

scale and b location is given by the two-dimensional
wavelet energy density function known as the scalogram:

E a; bð Þ ¼ T a; bð Þj j2 ð2Þ
In this paper we concern with the CWT as it allows arbi-
trarily high resolution in the time–frequency plane that
has been found especially useful in the analysis of com-
plex biosignals, most notably the ECG [15].

Methods
ECG signal preprocess
Broadly speaking, ECG contaminants can be classified
into the following categories:

� power line interference
� baseline wandering
� electrode pop or contact noise
� patient–electrode motion artifacts

The power line interference is narrow-band noise cen-
tered at 60 Hz (or 50 Hz) with a bandwidth of less than
1 Hz, and an aptive notch filter is used to remove it [16].
Baseline wandering is estimated with a third order spline
fitted to successive TP intervals. The spline is then sub-
tracted from the ECG. The other noise and artifacts are
suppressed by wavelet-based denoise technique [17].
The R peaks are located using the modulus maximum

pair of wavelet transform. The stability of the heart rate
is tested (standard deviation of RR < 10% mean RR). This
test was designed to exclude ECGs with large RR varia-
tions, since the morphology of the T wave may be
affected by a sudden change in heart rate.

Combined Algorithm (CA)
Wilcoxon Rank Sum test is a statistical method, which
can be used to test the null hypothesis that two popula-
tions X and Y have the same continuous distribution. If
the TWA exists in a piece of ECG data, which means
the amplitudes of T wave are consistent fluctuation, then
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the energy spectrums of T waves, which can be calcu-
lated by formula (2), appear the same fluctuation. And
the values obtained are separated into two groups, corre-
sponding to odd and even T-waves. Obviously, the two
groups can be considered as two independent samples
with unknown distribution, which meets the require-
ment of Wilcoxon Rank Sum test. So the Wilcoxon rank
sum test was considered appropriate for the statistical
analysis to obtain the probability that the groups come
from the same population.
According to reference [14], the qualitative detection

algorithm is described as follows.

1)When R peaks are detected by modulus maximum
pair of wavelet transform, the mean RR intervals are
calculated. And the ECG time-frequency information
can be obtained.

2) Take the R peak as a fiducial point, T wave onset is
calculated by formula (3) [18]

Tsk ¼ 40þ 1:33
ffiffiffiffiffiffiffiffi
RRk

p
ms ð3Þ

Where k is the k th T wave, k = 1, 2,⋯. And the width

of analyzed T wave window is 400 ms. A temporal
interval of 400 ms from Tsk is considered to delimitate
the whole T-wave.

3) The frequency range of T wave is defined as being
between 0.5 and 10 Hz.

4) For each delimited time–frequency region in the
wavelet transform time–frequency plane,
corresponding to the T wave, the total energy
contained within the selected time–frequency region
is calculated by formula (2) and extracted, which was
shown as Figure 1.

5) All the energy values obtained are separated into two
groups, corresponding to odd and even T waves.
Then the Wilcoxon rank-sum test was applied to the
two groups of values, and the probability that the
groups come from the same population is then
calculated. If the probability is below 0.05 (P < 0.05),
that means the two groups are assumed to come
from different populations and a TWA is deemed to
Figure 1 Time-frequency feature extraction of T wave. (a) a rhythm; (b
the T wave.
have been detected. Otherwise, the signal is classified
as exhibiting no TWA.

For the detected ECG signal existing TWA, A correl-
ation technique is used to measure TWA quantification-
ally [12].

1) The median T wave (Tm) is computed from the
consecutive T waves of the detected ECG signal
existing TWA.

Tm ¼
XN
i¼1

Ti=N ð4Þ

Where N is the total number of T waves from the

analyzed ECG signal.

2) An alternans correlation index (ACIi) is computed to
measure morphological changes of each of the
consecutive Tj waves in comparison to Tm.

ACIi ¼

XM
j¼1

Ti jð ÞTm jð Þ

XM
j¼1

Tm jð Þ½ �2
ð5Þ

Where M is the number of sampling points of each
T wave. The ACIi indicates the alternans level of Tj

in comparison to Tm. If there exists at least 7
consecutive T waves whose ACIi are alternating, then
TWA start is considered in the first T wave of the
consecutive T waves. And the TWA stop is
considered in the last T wave of the consecutive T
waves.

3) The TWA amplitude (ACAi) for Ti wave can be
calculated using the formula (6):

ACAi ¼ 2 ACIi � 1j j

XM
j¼1

Tm jð Þ2

XM
j¼1

Tm jð Þ
ð6Þ
) wavelet temporal-frequency figure of the rhythm (c) total energy of



Table 1 Qualitative detection experiment data

SNR/dB P < 0.05 Se/% TWA(μV) P < 0.05 Se/%

20 31 62.0 10 37 74

25 47 94.0 20 42 84

30 50 100 50 49 98

35 50 100 100 50 100

40 50 100 200 50 100

total 228 91.2 228 91.2
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And the median TWA amplitude (A�CA) for the ana-
lyzed data is calculated by the formula (7)

―
ACA ¼

XN
i¼1

ACAi

N
ð7Þ

Since Correlation technique tracked T waves in
time, it was able to detect short-time T wave ampli-
tude changes, as well as the number and the length
of alternating segments in the series of beats, and
the number percent of alternating T waves, which
means it can quantificationally analysis the TWA in
time domain.

Simulated data
In actual ECG recordings, the exact value and timing of
the TWA episodes are unknown. And such signals can-
not be used to test algorithms. For that reason artificial
ECG with added synthetic TWA are used to test the
algorithms in this paper.
The artificial ECG model is defined as formula (8).

S ¼ eþ k:aþ l:w ð8Þ
Where S is the artificial ECG, e is the clean ECG signal

obtained as the periodic repetition of a single beat,
which guarantees that all the T waves are identical and
so no TWA can be present in the original signal. a is the
TWA episode, k is the alternans level, w is the noise,
and l is the mixed noise factor. For the artificial ECG,
four different noise sources have been considered: simu-
lated Gaussian white noise, and three records of physio-
logical noise from the MIT-BIH Noise Stress Test
database: baseline wandering, muscular activity; elec-
trode motion.
The specific obtained process of artificial ECG (i.e., S)

is described as below.

1) A healthy subject underwent 10-min ECG recording
sampled at 500 Hz and quantified with 5 μV/LSB in
resting conditions, and a heartbeat, duration of
1 second, is selected. The clean ECG is formed by
periodic repetition of a single beat 1000 times. The
other 4 clean ECG segments from other 4 healthy
subjects are formed in the same way. Then 5 clean
ECG segments are obtained.

2) The shape of Gaussian function and its first order
derivative (half of the whole waveform) are used as
the alternans waveform separately. And there are five
different alternans level for each alternans waveform,
i.e. 10, 20, 50, 100, 200 μV. So 10 different TWA can
be obtained, which are added the every T wave of
above 5 clean ECG segments. And 50 ECG segments
containing TWA are synthesized.
3) After linear superposition of above mentioned four
different noises, the mixed noise are added to the
artificial 50 ECG segments containing TWA. By
adjusting the mixed noise factor l to different level,
Signal-to-noise ratios are 20, 25, 30, 35 and 40 dB.
And finally 250 noised ECG segments containing
TWA (S = e + k · a + l ·w) are obtained.

Clinical data
The sudden cardiac death holter database and the Euro-
pean ST-T database are used as the clinical data sources.
These databases are chosen by two reasons: firstly, previ-
ous studies found T-wave alternans episodes, some of
them related to annotated ischemic episodes. Secondly,
the databases are well-known and available by many re-
search groups.
In the specific, a group of twenty five patients, who

survived an acute myocardial infarction were considered.
Each subject underwent 30-min ECG recording in rest-
ing conditions. And ECG segments were randomly
extracted.

Performance assessment
The detector performance needs to be evaluated with re-
gard to the detection rate duration and magnitude of
detected episodes. The validation of the detector should
begin with a comparison of the simulated TWA episodes
and the detector output in terms of sensitivity (Se). The
sensitivity is defined as the number of correctly detected
episodes divided by the total number of simulated epi-
sodes, i.e.

Se ¼ TP
TP þ FN

� 100% ð9Þ

Where TP is the number of true positive, i.e., the num-
ber of correctly detected ECG segments containing
TWA. FN is the number of false negative, i.e., the num-
ber of missed ECG segments containing TWA.

Results
Simulated data test
The TWA detection algorithm described in the previous
section was tested with the 250 artificial ECG test set.



Table 4 Test results of partial samples

Number Data source P < 0.05 A�CA/μV ASM/μV

ECG1 Subject 1 11(37%) 4.92 2.41

ECG2 Subject 2 7(23%) 3.21 1. 23

31 SCDHD 19(63%) 18.72 9.09

36 SCDHD 10(33%) 10.12 4.61

41 SCDHD 23(77%) 5.12 2.39

45 SCDHD 25(83%) 14.96 7.10

46 SCDHD 9(30%) 9.12 4.71

e0119 ST-TD 17(56%) 16.78 7.31

e0121 ST-TD 22(73%) 21.82 9.83

e0125 ST-TD 12(40%) 17.85 8.11

e0601 ST-TD 0 0 0

e1302 ST-TD 10(33%) 7.12 3.45

Table 2 quantitative measurement TWA (unit: μV)
Simulated
TWA

Max alternans
amplitudes

Min alternans
amplitudes

Mean
A�CA

10 8.01 7.21 7.53

20 15.95 14.67 15.35

50 38.30 37.02 37.59

100 76.19 74.12 75.21

200 150.71 149.09 150.04
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The algorithm classified as TWA (p < 0.05) 228
(91.20%) of the overall simulated ECGs, i.e., the number
of true positives was 228 and the number of false negatives
was 22. the Sensitivity of the algorithm was 91.2%. the de-
tection results under different SNR and alternans levels
were shown in Table 1.
We can find from the Table 1 that the algorithm clas-

sified (i.e., p < 0.05) 100.00% of the signals containing
TWA when the SNR is above 30. Alternatively, consider-
ing now the effect of the amplitude of the artificial TWA
added to the signal, the algorithm classified as contain-
ing TWA 100.00% of the artificial TWA with amplitudes
of 100 μV, 98% with 50 μV.
We also find statistically that the algorithm classified

92.0% of the signals with no added noise as containing
TWA under different SNR (SNR = 20, 25, 30, 35, 40).
Further, the quantitative measurement of TWA was

implemented to above qualitative detected ECG seg-
ments. The results were shown in Table 2.
Given the simulated TWA amplitude, the relative

error (RE) of TWA measurement is defined as follows

RE ¼ Atwa � �Að Þ=Atwa ð10Þ

Where Atwa is the simulated TWA amplitude, and �A is
the measured TWA amplitude. RE represented the de-
viation percent of �A from Atwa.
The combined algorithm and SM gave the detection

result for the same simulated ECG segment with 30db
SNR in Table 3. (ASM: the measured TWA amplitude
by SM).
We can found that the CA got the smaller RE com-

pared with SM. A
―

CA was greater than ASM (220%), and
less than simulated TWA(75%), and the measured TWA
value was closer true TWA value.
Table 3 TWA detection results of CA and SM

TWA/μV A�CA ASM REACA/% REASM/%

10 7.5 3.4 25 66

20 15 6.9 25 65.5

50 37.8 17.4 24.4 65.2

100 75.2 34.8 24.8 65.2

200 152 69.6 24 65.2
Clinical data test
The algorithm was used for the analysis of real ECGs
selected from the above mentioned clinical database.
1-min lengths of ECG were considered that gave

between 60 and 80 beats for normal sinus rhythm. And
30 segments of the 1-min length ECG signal were
extracted from the selected patients, the sudden cardiac
death holter database and the European ST-T database
separately. They were analyzed using the algorithm
described in Section III and SM separately. And the Partial
results are shown in Table 4.
And the A

―

CA vs. ASM for the clinical data have the
correlation coefficients of 0.96, which was shown as
Figure 2.
For the patients of number 31, 41, 45, and e0121 in

Table 4, the TWA presence frequency in measured ECG
segments was above 70%. Consider that TWA is
regarded as a marker for sudden cardiac death. These
patients should be monitored in particular.
Figure 2 Measured TWA amplitude of CA vs. SM.
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Discussion
The definitions of T-wave onset and offset are not con-
sistent in different literatures, and T wave is easily
affected by the interference due to its lower frequency
and morphological diversity. An empirical value method
is used for extracting T wave in this paper [18]. The em-
pirical value method may induce erroneous judgement
in cases of RT interval variability, but it can avoid the
difficulties to determine the onset and offset of T wave,
and significantly reduce T wave detection calculation.
For this paper T wave energy is required to be
extracted, while the T wave energy is mainly concen-
trated in the middle part of the T wave, and its energy
near T-wave onset and offset is very small, so the possi-
bility of erroneous judgment caused by RT interval
variability is reasonable small. Two segments of ECG
data from the experimental signal were randomly
extracted, which are used in the simulation test. The
RT intervals are prolongation of 10 ms and shorten
10 ms, respectively, we found that the T wave energy
extracted changes were less than 1%, and the Wil-
coxon rank sum test results is no change, which
showed that using empirical value method to extract T
wave is proper.
The simulated ECG is obtained as a K-fold repetition

of a single beat extracted from a real ECG. A pertur-
bation, which waveform is generated by the Gaussian
function, is added every other T-wave in this artificial
ECG to simulate a TWA. And the amplitude of the
added signal can be controlled. Four different noise
sources from Gaussian white noise and physiological
noise have been considered. The artificial ECG has the
maximum approximation to clinical ECG, which guaran-
tees the experimental results with the credibility. The
ECG simulation scheme can be considered for perform-
ance evaluation of other TWA detection algorithms.

Conclusions
TWA study has the important research value. An exten-
sive scientific and clinical literature points to a funda-
mental link between TWA and susceptibility to life-
threatening ventricular arrhythmias. Although some
advances have been made in the TWA detection, it
remains troubling to test TWA in the ambulatory
ECG signals.
In this paper using the nonparametric test method

combining with the CWT and correlation technique, a
novel TWA detector algorithm was presented. The algo-
rithm was validated using simulated ECG signals with
artificial TWA of various amplitudes and noise levels.
And for the clinical data test, SM was involved to detect
and measure the same data with the algorithm, and their
results have the greatly high correlation. TWAs were
not only correctly detected qualitatively in frequency
domain by energy value of T waves, but the alternans
frequency and amplitude in temporal domain were
measured by calculating ACIi and A

―

CA.
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