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Abstract

Big Data, and the derived analysis techniques, such as artificial intelligence and machine learning, have been consid-
ered a revolution in the modern practice of medicine. Big Data comes from multiple sources, encompassing elec-
tronic health records, clinical studies, imaging data, registries, administrative databases, patient-reported outcomes
and OMICS profiles. The main objective of such analyses is to unveil hidden associations and patterns. In cardiac
surgery, the main targets for the use of Big Data are the construction of predictive models to recognize patterns or
associations better representing the individual risk or prognosis compared to classical surgical risk scores. The results
of these studies contributed to kindle the interest for personalized medicine and contributed to recognize the
limitations of randomized controlled trials in representing the real world. However, the main sources of evidence for
guidelines and recommendations remain RCTs and meta-analysis. The extent of the revolution of Big Data and new
analytical models in cardiac surgery is yet to be determined.
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Introduction

The combination of data coming from multiple sources,
and constituting databases, with significant possibility of
integration and complex aggregation and discriminant
analyses, defines the so-called Big Data, which intrinsi-
cally refers to extensive datasets, widely informative for a
large number and variety of persons.

In fact, large and rapidly increasing amount of data
(Volume), their multiple sources (i.e., clinical stud-
ies, registries, small database, administrative database,
patient-reported outcomes, genomic profiles and envi-
ronmental parameters) (Variety), the rapid data accu-
mulation (Velocity) and their ability to truly represent a
specific context (Veracity) characterize Big Data [1].
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Analyses of these data may unveil patterns, trends
and associations, and define reference models in aggre-
gations of persons [2]. As data digitalization and infor-
mation technology (IT) are spreading and improving
performance [3-5], the use of Big Data is steeply increas-
ing, becoming progressively a reference for many typical
processes in medicine, such as the identification of the
appropriate therapeutic choice by tailoring therapeutic
options, the evaluation of short and mid-term, proce-
dure-related or unrelated, risks of adverse events and the
definition of the prognosis. To such an extent, Big Data
may generate the basis for precision medicine, as factors
impacting event occurrence is progressively available for
the single subject and may improve effectiveness of car-
diovascular therapies [6].

The place of Big Data is far from being well determined.
Figure 1 offers a graphical synthesis of the present and
future of Big Data.
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Fig. 1 Big Data elaboration allows an improvement of risk
management, and diagnostic or therapeutic strategies in cardiac
surgery. The future challenge will be the practical application in
healthcare

Big Data: sources and analysis

The key points of the application of Big Data are the clini-
cal usefulness and the balance between costs of sophis-
ticated data analyses and the expected and real benefits
(i) to patients, in terms of quality of care, outcomes and
risk prediction; (ii) to operators, in terms of quality and
security of processes, from the diagnosis to the choice of
therapeutic options, in a perspective of resources saving.

Regarding the sources, Electronic Health Record
(EHR) is the main source of Big Data. Administrative
data, which are commonly employed for billing pur-
poses in fee-for-service health systems, may turn helpful
for a large spectrum of analytic goals, and may fuel risk
modeling for clinical and economical purposes [7]. Sev-
eral approaches are used to enable data aggregation from
EHR and to facilitate their contribution to Big Data. The
most relevant limitations of the use of these databases
are the risk of misclassification and the impact of missing
data [8].

Digital imaging significantly contributes to Big Data
generation. Today, almost all medical images are stored
in pixels or voxels [9], which can be processed by soft-
ware aiming at improving data quality and diagnostic
accuracy [10].

Finally, OMICS datasets, or genome, proteomic, tran-
scriptomic, epigenomic, and metabolomic data, are read-
ily available in digital and structured forms, allowing the
recognition of patterns useful for grouping procedures;
they are additional important sources for Big Data [11].

In cardiovascular medicine, the contribution of
OMICS is enormous and hold a very high potential for
Big Data generation and subsequent analysis. A valid
example of the OMICS data analysis is that it is able to
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provide information on myocardial molecular profiles of
cardiac surgical patients [12—14]. The variants identifica-
tion by OMICS techniques allows performing association
studies, which may turn useful to risk stratification and
outcome prediction in the context of precision medicine
[15-19], using appropriate systems for analyses [20-22].

When it comes to analyses of Big Data, classic statis-
tics is limited. Independent storage systems, immediate
access and relational databases procedures are crucial
for Big Data analyses. Artificial intelligence (Al) is of a
particular usefulness, conceived as computer and math-
ematical concept allowing “machines” to execute learn-
ing, problem-solving, patterns recognition, reasoning
and planning, in a way that resembles “human thinking’,
therefore dealing with uncertainty, projection, and pro-
duction that are well beyond extrapolating regression
models validated in subsets of the general population,
called validation samples, to approximate prediction in
the general population.

The ability of such a technology to process decisions
independently, recognize errors and readjust the decision
or prediction models and processes, are the main charac-
teristics of the AI, based on machine learning (ML) and
deep learning (DL).

ML is the study of a mathematical algorithm model
from sample data which in turn is used to generate pre-
dictions or decisions. ML algorithms can be supervised,
unsupervised and reinforced [23]. DL is composed of
artificial neural networks, with representation learning,
to mimic human cognition. DL could be a module to
automate predictive analysis, from which data is deduced
in a non-linear way. The advantage of a non-linear inter-
pretation is the better ability to identify and interpret
more complex characteristics [24] and therefore is linked
to a hierarchy of increasing complexity and abstraction
[25]. DL is used for image evaluation, such as cardiac
magnetic resonance scans; this requires adequate skills
and systems [26, 27].

Logistic regression (LR) is a classic classification algo-
rithm that makes a linear combination of input variables
and uses the sigmoid function to output a probability.

Neurons in artificial neural networks (ANN) make a
linear combination of the output value from the upper
layers’ neurons, pass it through sigmoid functions, and
finally output a value to the next neurons [28].

The use of predictive models that evaluate the influ-
ence of covariates, in the prediction of the results, allows
it to identify the patients for whom the intervention will
be successful. However, in analyzing non-randomized
diagnostic or therapeutic strategies, it is possible to com-
pare non-similar groups, exposing patients to subsequent
complications [2].
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The present of Big Data in cardiac surgery

and the road ahead

While procedures safety and outcomes in cardiac sur-
gery have improved over the years in the majority of elec-
tive procedures, cardiac surgery is facing patients with
increased complexity due to improved survival owing
to refined cardiological, pneumological and oncologi-
cal therapies. Changes in such a clinical context require
rethinking clinical risk assessment and management as
well as redefinition of optimal timing for surgical options.

So far, cardiac surgery has relied on logistic models to
estimate the risk of events, including mortality associ-
ated with cardiac surgery, as essential components of
routine clinical management of cardiac surgical patients.
The EUROscore II and the Society of Thoracic Score
(STS) scores are the logistic models for cardiac surgery-
related risk stratification most commonly employed.
Nevertheless, the prediction of those estimates is
debated, especially in subsets of patients [29]. AI applied
to Big Data has the potential to change the paradigm,
from a theoretical and average risk prediction to simu-
lations in single patients, weighting tailored therapeutic
options and managing risks, and finally employing sus-
tainable options to improve outcomes.

This is the most appealing application of the new con-
cept of the meta-verse, an aggregate of Big Data, infor-
mation technologies and Al converging to generate novel
approaches to handle reality by navigating virtual near-
future in clinical contexts, hopefully yielding time saving,
less errors, more precision, variability due to operators,
minimize costs and human effort while prolonging life
with reasonable quality.

To such an extent, Big Data and AI have been applied
in seminal studies in cardiac surgery in the field of myo-
cardial revascularization, valvular heart diseases and
end-stage heart failure (Table 1). Table 2 shows the ongo-
ing trials focused on the application of Big Data-derived
analysis in cardiac surgery.

Myocardial revascularization

In the field of surgical myocardial revascularization,
structured data from EHR managed by the Society of
Thoracic Surgeons, the American College of Cardiology
(National Cardiovascular Data Registry), and the Ameri-
can Heart Association, represent a significant source for
data analysis. Clinical records, and data from imaging,
analyzed and interpreted using Al approaches, may inte-
grate original approaches based on clinical registries and
regression models (e.g.: neural networks) [9, 30].

One of the major challenging research tasks, to date,
is to evaluate whether percutaneous coronary interven-
tions (PCI) are superior over coronary artery bypass sur-
gery (CABQG) in specific clinical contexts. Randomized
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trials (RCTs) on myocardial revascularization have been
used to answer this question, and to develop a tool for
the identification of patients who may benefit from one
therapeutic option over the other or a combination of
both (hybrid revascularization), with minimized clinical
risk and expenditure. Although RCTs are very effective
to control treatment selection bias, they are low-per-
forming in evaluating subgroups and they suffer from
inappropriate statistical power in subset and possible
post-hoc biases. Observational, nonrandomized data
gathered from registries and large multi-sources data-
bases, may be closer to real-world representing a very
large majority of patients, and therefore may work bet-
ter with single patients using Al based analytic modali-
ties. In contrast, those sources of data may be affected by
lower data control and potential biases in the outcome
definition and assignment [31]. Weintraub and colleagues
[32, 33] compared the effectiveness of different myocar-
dial revascularization strategies by linking the American
College of Cardiology Foundation (ACCF) National Car-
diovascular Data Registry and the Society of Thoracic
Surgery (STS) Adult Cardiac Surgery Databases, to data
from claims from the Centers of Medicare and Medic-
aid. They demonstrated that the real-world mortality was
not significantly different at 1-year from that anticipated
by commonly used scores, while long term survival was
higher in patients receiving CABG as compared with
patients who underwent PCI. The method of analyses of
these data required the use of probabilistic matching to
identify patients throughout databases, adjusting for clin-
ical covariates with the use of inverse probability weight-
ing, and correction of residual confounding by means of a
sensitivity analysis.

A valid example of cost-effective applicability of Al
to Big Data in the field of myocardial revascularization
is the ASCERT study (ACCF and STS Database Col-
laboration on the Comparative Effectiveness of Revascu-
larization Strategies) [34], where two revascularization
strategies (PCI versus CABG) were evaluated in patients
suffering from stable ischemic heart disease. linking large
converging databases, both clinical and administrative, to
obtain data from 86,244 patients for CABG and 103,549
patients for PCI. Those figures are much larger than any
proposed by RCTs. Interestingly, the authors found that
patients undergoing CABG had better outcomes than
those undergoing PCI, but at the expense of higher costs,
allowing the calculation of the indicator of the incremen-
tal cost-effectiveness ratio expressed as cost per quality-
adjusted life-year gained.

The role of some patients-related characteristics in
determining outcomes in myocardial revascularization
strategies are highlighted in the large study by Hlatkyet
al. [35], where authors demonstrated lower long-term
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mortality with CABG rather than with PCIL, in an unse-
lected group of patients extracted by the general popu-
lation of those undergoing those procedures, with
outcomes substantially modified by factors such as dia-
betes, smoking habit, heart failure, and peripheral artery
disease.

The fundamental study of Weintraub et al., by linking
the STS database to that of the Centers for Medicare and
Medicaid Services, showed that in stable patients, older
than 65 years with multivessel coronary artery disease,
CABG offers an advantage in terms of long-term survival.

While RCTs remain the only accepted evidence-based
information gathered in medical guidelines, studies
based on Big Data and AI added knowledge on the com-
parative effectiveness of the two therapeutic strategies.
The place of Big Data analysis is therefore yet to be pre-
cisely determined.

Valvular heart diseases and cardiac imaging

The identification of significant valvular diseases has the
potential to clarify the etiology, and/or reveal a conse-
quence of ventricular failure, with or without dilatation,
which may contribute to define the prognosis and to
identify elements acting as triggers for worsening heart
failure and hence prognosis. Echocardiography is used
widely for assessment of cardiac structure and function,
with diagnostic accuracy and reliability depending on
the operators’ skill, experience and expertise. In contexts
such as high volume in busy environment, and emer-
gency, machines enriched with a technology that analy-
ses live imaging in real-time, continuously comparing
it with a pool of reference images, may help optimizing
the imaging protocol and identifying diseases or patterns
of abnormalities, detecting trends over time and evalu-
ating the stability of specific measurements. Those are
intriguing perspectives that may be associated with the
application of Al in the field of echocardiography. For
instance, in mitral valvular regurgitation, recognition of
increasing severity of the valvular insufficiency, ventricu-
lar dilatation and reduction in chamber shortening, atrial
dilatation, as well as the worsening myocardial function
assessed by means of semiautomated, relatively load-
independent parameters, may parallelly run with the
detection of clinical changes and even anticipate overt
changes in symptoms and signs of heart failure (HF).

In echocardiography, automated views recognition
and structures identification may be considered an initial
step toward semi-assisted diagnostic studies. To such an
extent, Al-based technology is a key element, as convolu-
tional neural networks may be employed to identify key
reference points on images, and then feature specific for
diagnostic patterns. Identification of normal patterns,
deviations from normal patterns or specific pathologies
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has been possible in experimental studies in more than
9 cases in 10 evaluated cases [36] in algorithm-based
supervised machine learning [37]. A further step in AI-
assisted echocardiography may be the identification of
deviation from physiology or overt pathological condi-
tions, such as left ventricular hypertrophy, hypertrophic
cardiomyopathy [38, 39], ventricular dilatation and
reduced chamber and myocardial function [40]. With
2-D speckle-tracking technology, an accurate semi-auto-
mated volume and systolic function quantification may
be run bed-side and take a few minutes or seconds [41,
42]. In the context of valvular disease associated with
ventricular dysfunction, an important role is played by
quantification of contractility reserve, which impacts
prognosis. Wall motion quantification is relevant to such
an extent, with Al operated diagnostic modality pushing
accuracy of wall motion quantification as high as 85%
[43, 44], helping in the case of evaluation of ventricular
contractility reserve and aiding in decision making on
the best valvular disease management.

Assessment of mitral valve regurgitation severity may
be aided by automated processes based on deep learn-
ing machines [45, 46]. With regard to aortic valve dis-
ease, identification of trends over time in ascending aorta
and aortic root dimensions, ventricular dimensions and
shortening, relies on reproducibility of imaging in specific
views, and may provide important information impacting
preclinical and, timely, clinical decision making. Moreo-
ver, aortic annulus sizing represents an important target
of quantification, as to date transcatheter procedures for
aortic valve replacement are increasing steeply [47].

Beyond echocardiography, the potential revolution of
Al may be even more applicable and profound in more
standardized diagnostic processes such those applicable
to nuclear medicine, computed tomography and mag-
netic resonance imaging, which may suffer much less
variability between-subjects due to body size [48, 49].

HF and mechanical circulatory support: selection

of patients, prediction of adverse events and technology
development

Heart transplantation (HTx) is the gold standard therapy
in advanced HF, defined as persistence of symptoms and
significant personal physical limitations despite opti-
mized pharmacological and standard nonpharmacologi-
cal therapy, associated with recurrent hospitalizations
and need for escalation therapy including inotropes
[50]. However, the number of organs available does
not match the number of patients in need for organs as
they slide toward a deterioration of the clinical condi-
tions and require a timely intervention. Left Ventricular
assist devices (LVAD) may help as bridge to HTx, or to
candidacy or decision, or even as destination therapy in
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subjects with advanced or terminal heart failure [51, 52].
Those patients, suffering from end-stage HF, present with
unique challenges: frailty [53], end-organ damage, risk
for acute decompensations, and high mortality at short-
term. Events as cardiogenic shock carries worsened prog-
nosis. The therapeutic strategy shows multiple options,
with multiple devices that can be employed in different
phases of the clinical course [54].

Because of the high risk of surgery and the patients’
characteristics, the prediction of peri-procedural adverse
events and of the long-term complications are critical
issues when planning LVAD implantation, impacting
benefit and quality of life per costs [55], and healthcare
sustainability. Data from registries and discriminant
statistics are commonly used to identify potentially life-
threatening conditions impacting prognosis and hospital
stay duration after LVAD implantation [56].

However, the classic way for risk-prediction estimation
is based on statistical methods that implies a propor-
tional and statistically significant participation of several
variables in a context where hazard is not proportional
over time [57]. On a different approach, Al and Big Data
may simulate the effects of decisions, and their interac-
tions with an uncertain environment [58] and facilitate
not only the prediction of specific pre-defined events.

Prediction of complications after LVAD implantation
is relevant to sustainability of LVAD procedures. Al has
been involved to recognize drive-line infections using
photographic database as background source [59] and
the identification of clusters of variables that predict right
ventricular failure, bleeding, infection and pump failure
due to pump thrombosis [60].

While statistically-based risk models have proven sub-
optimal ability to predict mortality risk in LVAD, by use
of Interagency Registry for Mechanically Assisted Circu-
latory Support (INTERMACS), data from 2006 to 2016,
for a total of 16,120 patients included, and bootstrapping
with 1000 replications in the testing set, improved 90-day
discrimination from 0.707 [0.683-0.730] to 0.740 [0.717-
0.762] and 1-year mortality from 0.691 [0.673-0.710] to
0.714 [0.695-0.734] (all p<0.001). The net reclassifica-
tion rate was up to 49% for 90-day mortality and 37% for
1-year mortality. The findings supported the concept that
ML may increase the performance of a risk model for
durable LVAD mortality compared to logistic regression-
based algorithm [60]. Because continuous blood flow
from LVAD is associated with increased risk of compli-
cations, as gastrointestinal bleeding, continuous pump
speed generating flow is modulated to generate pulsa-
tile flow. More importantly, pump speed of the LVAD
may be controlled to assist left ventricles during a single
beat to optimize systolic, versus diastolic assistance [61].
Diastolic versus systolic modulation of the pump speed
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may impact on flow pulsatility and diastolic assistance to
reduce external myocardial work [62]. These mathemati-
cal models are limited in their applicability because the
need for pressure feedback signals from the cardiovascu-
lar system require suitable integrated long-term pressure
sensors. To date, novel Al based controllers, real-time
deep convolutional neural network-based, are tested to
estimate left ventricular preload using LVAD flow analy-
ses and a sensorless adaptive control system, trained and
evaluated through a number of cross validation settings
and physiologic situations in different patient and differ-
ent conditions, resulting in accurate pre-load evaluation
(root mean squared error of 0.84 mmHg, reproducibil-
ity coefficient of 1.56 mmHg, coefficient of variation of
14.44%, and bias of 0.29 mmHg for the testing dataset)
[63]. The system was able to use LVAD data to measure
preload and prevent ventricular suction and pulmonary
congestion [64].

Conclusions

After several years of intense research yielding a great
number of scientific publications, a major gap exists
between practical application of Al applied to Big Data
and RCTs to guide practice in real work, in large part
because Al and Big Data are yet to become controlled
research tools on a large scale. Data quality control, miss-
ing data, privacy and potential conflicts of interests in a
variety of stakeholders, costs of the technology required,
and the need for high-performing information technol-
ogy are still barriers for a routine and wide use of Big
Data in the field of cardiac surgery research and clinical
process.

Nevertheless, in the context of an enormous resource
re-allocation due to the COVID-19 pandemic, that
reduced significantly the research output in other fields
of medicine, Big Data and Al may turn to be relevant
tools.

The role of hypothesis generation in Big Data science is
without doubt, but it should be considered as a comple-
mentary mean to obtain evidence [65].

However, the crucial match on usefulness of Big Data
and Al in the near future is also played in the side of pro-
ductivity, simulation, augmented reality aiding diagnos-
tic and clinical decision making, communication with
patients and generating precision medicine. These fea-
tures have the potential to go well beyond the context of
knowledge generated from RCTs to prove or unconfirm
specific hypotheses, by using strict enrollment criteria to
make homogenous the population. Hence, we all need to
be familiar with those concepts and tool for the future,
which is not that far away from now.
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