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Abstract 

Despite the rise in morbidity and mortality associated with vascular diseases, the underlying pathophysiological 
molecular mechanisms are still unclear. RNA N6-methyladenosine modification, as the most common cellular mecha-
nism of RNA regulation, participates in a variety of biological functions and plays an important role in epigenetics. A 
large amount of evidence shows that RNA N6-methyladenosine modifications play a key role in the morbidity caused 
by vascular diseases. Further research on the relationship between RNA N6-methyladenosine modifications and 
vascular diseases is necessary to understand disease mechanisms at the gene level and to provide new tools for diag-
nosis and treatment. In this study, we summarize the currently available data on RNA N6-methyladenosine modifica-
tions in vascular diseases, addressing four aspects: the cellular regulatory system of N6-methyladenosine methylation, 
N6-methyladenosine modifications in risk factors for vascular disease, N6-methyladenosine modifications in vascular 
diseases, and techniques for the detection of N6-methyladenosine-methylated RNA.
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Background
RNA modification is a ubiquitous process in nature that 
regulates the transmission and expression of genetic 
information in cells. It can affect the phenotype of cells 
by influencing the transcription, splicing, stability, trans-
nuclear transport, and translation of RNA [1–3]. Accord-
ing to the MODOMICS [4] database, more than 170 
chemical modifications that regulate RNA have been 
discovered to date, most involving methylation. The 
methylation of RNA results in various forms, including: 
N1-methyladenosine (m1A), 5-methylcytosine (m5C), 
N6-methyladenosine (m6A), 7-methylguanosine (m7G), 
N1-methyladenosine (m6Am), and 2ʹ-O-methylation (2ʹ-
OMe) [4]. Moreover, RNA methylation modifications can 

be found in several different types of RNA, such as trans-
fer (tRNA), ribosomal (rRNA), messenger (mRNA), and 
non-coding (ncRNA) RNAs, and regulate their expres-
sion [5, 6].

M6A methylation, the addition of a methyl group at 
the nitrogen atom at position 6 of adenine, is catalysed 
by methyltransferases and is the most common modi-
fication of mRNA in eukaryotic cells [7–9]. Previous 
studies have shown that RNA m6A modification plays 
an important role in the development, progression, and 
prognosis of cardiovascular diseases [10–13]. However, 
reports focused on cardiac disease. In recent years, with 
economic development, the morbidity due to vascular 
diseases, especially critical diseases such as aortic dis-
section (AD) and aortic aneurysm, has been increasing, 
which endangers human life and health. To better pre-
vent and treat vascular diseases, intensive research on 
their underlying mechanisms is critical [14–16]. How-
ever, studies that summarize the role of RNA methylation 
in the progression of vascular diseases are still lacking. 
Therefore, in this review, we discuss the role of RNA 
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m6A modifications in risk factors, morbidity, and pro-
gression of vascular diseases, and provide a direction for 
the research of m6A modifications in the field of vascular 
diseases.

Main text
The RNA m6A modification system
Previous studies have found that m6A is generally present 
in specific RNA motifs, such as DRACH (D = A/G/U; 
R = A/G; H = A/U/C), 3ʹ untranslated regions (UTRs), 
or around the stop codon [17, 18]. In eukaryotes, RNA 
N6-methyladenosine exists in a dynamic equilibrium that 
is determined by a regulatory system consisting of writer, 
eraser, and reader proteins [19–21]. Writing and erasing 
of m6A-methylated RNA occur mainly in the nucleus, 
whereas reading occurs mainly in the cytoplasm [17, 18, 
20, 22, 23]. Abnormalities in any component of this regu-
latory system can lead to disturbances in the balance of 
RNA m6A modifications, which are associated with a 
number of diseases, including failure to thrive, obesity, 
type 2 diabetes mellitus (T2DM), cancer, and weakness 
[2, 7, 24–29]. The associations between individual com-
ponents of the m6A modification system and vascular 
diseases are presented in Table 1.

Writers of N6‑methyladenosine
Writers deposit N6-methyladenosine on target RNAs. 
The writer complex includes the enzymes methyl-
transferase-like 3 (METTL3), methyltransferase-like 
14 (METTL14), Wilms tumour 1-associated protein 
(WTAP), methyltransferase-like 16 (METTL16), and vir-
like m6A methyltransferase associated (VIRMA). Two 

proteins, RNA-binding motif protein 15 (RBM15) and 
RNA-binding motif protein 15B (RBM15B), modulate the 
action of this complex [30, 31].

Previous studies have shown that METTL3 is the major 
catalytic subunit of the RNA methyltransferase complex. 
METTL3 and METTL14 form a heterodimer, in which 
METTL14 acts as an adaptor protein that enhances the 
function of METTL3 [32, 33]. Studies by Yao et  al.[34] 
and Chamorro-Jorganes et  al.[35] have shown that 
METTL3 is essential for the regulation of the VEGFA and 
Wnt signalling pathways, which participate in physiologi-
cal processes such as angiogenesis, vascular permeability, 
and spermatogonial stem cell maintenance.

WTAP acts as a guide to direct binding of the 
METTL3/METTL14 heterodimer to the target RNA [36, 
37]. Previous studies have shown that desmoplakin (DSP) 
is a special protein that plays an important role in the 
formation of the lumen of blood vessels by endothelial 
cells (ECs). WTAP increases the stability of DSP mRNA 
through m6A modification; m6A-modified DSP is rec-
ognized by and binds insulin-like growth factor 2 mRNA 
binding proteins 1 (IGF2BP1) and 3 (IGF2BP3), causing a 
decrease in the morbidity of brain arteriovenous malfor-
mation lesions [38–41].

Recent studies have shown that METTL16 is catalyti-
cally active in specific situations [42, 43]. Study of Mendel 
et al. have suggested that METTL16 regulates the expres-
sion of S-adenosyl methionine synthase, which in turn 
plays a role in early embryonic development [44].

VIRMA is another recently discovered catalytic com-
ponent of the RNA methyltransferase complex that 
deposits N6-methyladenosine in the 3ʹUTR [45].

Table 1 Association between individual components of the m6A modification system and vascular diseases

Component m6A levels Main function Reference

Writer METTL3 Increased Major catalytic subunit [32, 33]

METTL14 Increased RNA adaptor that enhances METTL3 function [32, 33]

METTL16 Increased Catalytic subunit (on adenosine in loops or secondary structures outside DRACH motif )
Regulates the expression of S-adenosyl methionine synthase

[42–44]

WTAP Increased Guides binding of METTL3/METTL14 heterodimer to target RNA
Increases DSP and leads to brain arteriovenous malformation lesions

[36–41]

VIRMA (KIAA1429) Increased Catalytic subunit [45]

Eraser FTO Reduced Role in tumorigenesis, oocyte maturation and adipose tissue regulation [46–55]

ALKBH5 Reduced Fundamental and widespread role within mammalian cells [46–55]

Reader YTHDF1 – Facilitates target mRNA translation (combined with eIF3) [29]

YTHDF2 – Reduces the stability of m6A-methylated mRNA [2]

YTHDF3 – Role in the initiation of translation (through interaction with YTHDF1 and YTHDF2) [60]

YTHDC2 – Facilitates mRNA translation
Affects mRNA stability

[61, 62]

YTHDC1 – Regulates pre-mRNA splicing and maturation
Role in the nucleus transport of methylated mRNAs

[26]

HNRNPs – Alters the structure of target RNA for recognition by RNA binding proteins [31, 63, 64]
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Erasers of m6A
Erasers are demethylates that eliminate RNA m6A 
modifications. So far, two important erasers have been 
identified: the fat-mass and obesity-associated pro-
tein (FTO) and α-ketoglutarate-dependent dioxyge-
nase AlkB homolog 5 (ALKBH5). Both are members of 
the α-ketoglutarate-dependent dioxygenase family of 
enzymes; however, while FTO is expressed in all tissues, 
ALKBH5 is primarily expressed in the testes [46–48] 
and their targets also differ: FTO is located between the 
nucleus and cytoplasm and has a preference for m6Am, 
m6A, and m1A; ALKBH5 is located in the nucleus 
and has a preference for m6A [49, 50]. The FTO and 
ALKBH5 enzymatic activity is dependent on  Fe2 + and 
α-ketoglutarate as cofactors [51, 52]. FTO plays a role 
in tumorigenesis, oocyte maturation, and adipose tissue 
regulation, whereas ALKBH5 plays a fundamental and 
widespread role within mammalian cells [7, 52–55].

Readers of m6A
Readers are proteins that can identify, bind, and link 
RNA N6-methyladenosine modifications to specific 
biological functions. Many readers have been recog-
nized, including the YTH family (YTHDF1, YTHDF2, 
YTHDF3, YTHDC1, and YTHDC2) [56], the heteroge-
neous nuclear ribonucleoprotein family (HNRNPA2/B1, 
HNRNPC, and HNRNPG) [57], eukaryotic initiation fac-
tor 3 (eIF-3), insulin-like growth factor 2 mRNA binding 
proteins (IGF2BPs 1, 2, and 3) and proline rich coil 2A 
protein (Prr2a). They can directly bind m6A or act as part 
of m6A-binding ribonucleoprotein complexes to exert 
their biological effects [58, 59].

YTHDF1, YTHDF2, YTHDF3, and YTHDC2 are local-
ized mainly in the cytoplasm. Previous studies have 
shown that YTHDF1 combines with eIF-3 to facilitate 
target mRNA translation [29]. YTHDF2 reduces the sta-
bility of m6A-modified mRNA [2], and YTHDF3 plays 
an important role at the initiation of translation through 
interaction with both YTHDF1 and YTHDF2 [60]. 
YTHDC2 facilitates mRNA translation and affects its sta-
bility [61, 62]. YTHDC1 is located in the nucleus, regu-
lates pre-mRNA splicing and maturation, and plays a key 
role in the nucleus transport of methylated mRNAs [26].

Members of the HNRNP family process RNAs through 
the “m6A switch” system, where the structure of the tar-
get RNA is changed and recognized by RNA binding pro-
teins [31, 63, 64].

RNA m6A modifications in risk factors for vascular disease
In recent years, the morbidity of vascular diseases has 
gradually increased; common high-risk factors of vas-
cular diseases, including obesity, diabetes, hypertension, 

and atherosclerosis, have played a critical role in this rise. 
These factors can cause coronary heart disease (CHD), 
arterial occlusion, arterial dissection, aneurysms, and 
other common vascular diseases. Studies have shown 
that RNA m6A plays an independent role in the regula-
tion of these high-risk factors. In this review, we discuss 
the regulatory role of RNA m6A modifications in dif-
ferent high-risk factors. The associations between m6A 
methylation and risk factors for vascular diseases are pre-
sented in Table 2.

Obesity
Obesity is a pathological change caused by an exces-
sive intake of exogenous lipids or a dysfunction of lipid 
metabolism. Mo et  al. [65] used the GWAS database to 
investigate the effect of m6A-associated single-nucle-
otide polymorphisms (SNPs) on lipid metabolism. The 
results have shown that the rs6859 variant at the 3ʹUTR 
of PVRL2 led to an increase in low-density lipoprotein 
(LDL), total cholesterol, and triglycerides, and to lipid 
metabolism dysfunction [65].

Several studies have shown that abnormal variations in 
FTO expression are closely related to obesity. A recent 
study carried out by Song et  al. showed that abnormal 
increase in zinc-finger protein 217 (zfp217) led to abnor-
mal increase in FTO, which in turn caused a decrease in 
m6A-YTHDF2, ultimately leading to obesity [66]. In the 
study by Mo et  al., inhibition of the expression of FTO 
induced a decrease in total cholesterol and LDL, and sup-
pressed the formation of atherosclerotic plaques [67]. 
Increased FTO expression promotes the formation and 
differentiation of adipocytes by increasing the expression 
of Runt-related transcription factor 1 [68]. Studies have 
also shown that FTO variants affect the morbidity of obe-
sity. In post-menopausal women, FTO rs9939609 variant 
were prevalent and elicited higher triglyceride, SCD40L, 
visfatin, homocysteine, and total cholesterol levels as well 
as higher body mass indices [69, 70]. The FTO rs1421085 
(C > T) variant led to higher macronutrient intake, obe-
sity, and T2DM [71]. Due to the role of FTO in obesity, 
drugs targeting FTO have been developed.

Type 2 diabetes mellitus
T2DM often leads to intimal injury, abnormal thicken-
ing, and occlusion of peripheral blood vessels. Therefore, 
it is one of the high-risk factors for ischemic injury and 
stroke.

In a study by Yang et  al., FTO was shown to play an 
important role in the development of T2DM. In that 
study, FTO induced an increase in the expression of fork-
head box O1 (FOXO1), glucose-6-phosphatase (G6PC), 
and diacylglycerol O-acyltransferase 2 (DGAT2), which 
in turn lead to the dysfunction of lipid and glucose 
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metabolism [72]. In FTO knockout mice, a high-fat diet 
led to glucose intolerance, insulin resistance, and hyper-
tension [73].

Studies have found that RNA m6A modifications are 
closely related to the function and number of pancreatic 
β-cells. These, in turn, are key factors in glucose metabo-
lism. β-cell arrest and insulin secretion are inhibited by 
decreased m6A modifications in insulin-like growth fac-
tor 1 (IGF1)-Akt-pancreatic and duodenal homeobox  1 
(PDX1) transcripts [74]. METTL14 plays a key role in 
the development of T2DM by affecting the differentia-
tion and function of β-cells; this, in turn, leads to glucose 
intolerance and T2DM. Additionally, METTL14 is asso-
ciated with β-cell death and inflammation [75].

Hypertension
In recent years, with the fast economic growth and global 
improvement of living standards, the morbidity of hyper-
tension as well as its complications, including CHD, AD, 
and aortic aneurysm, has increased. Previous studies 
have shown that RNA m6A plays an important role in the 
development of hypertension.

Mo et al. analysed data from GWAS to find a relation-
ship between m6A-associated SNPs and hypertension. A 
total of 1236 SNPs, such as rs9847953 and rs197922, were 
found to be associated with blood pressure regulation 

and most of them were modified by m6A methylation 
[76]. A recent study by Marcadenti et  al. found that, 
in men with hypertension, the m6A-associated SNP 
rs17782313 in the melanocortin 4 receptor (MC4R) had 
a negative association with diastolic pressure and mean 
blood pressure [77].

The eraser FTO also plays a critical role in blood pres-
sure regulation. A decrease in FTO expression leads to 
protection against tachycardia, hypertension, and vas-
cular resistance. Recent studies have also found that the 
pathogenesis of hypertension may be related to a change 
in m6A methylation levels in peripheral cells in microves-
sels [78].

Atherosclerosis
Studies have revealed that atherosclerosis has a close 
relationship with lipid metabolism and inflammation. 
In a study by Jian et al., ApoE knockout mice were used 
to investigate a relationship between RNA m6A modi-
fication and atherosclerosis. Their study revealed that 
FOXO1 m6A methylation was increased by METTL3 
and recognized by YTHDF1. This resulted in an increase 
in intercellular adhesion molecule 1 (ICAM-1) and vas-
cular cell adhesion molecule 1 (VCAM-1), leading to 
mononuclear/endothelial cell adhesion and atheroscle-
rosis [35, 79]. Tumour necrosis factor-α (TNF-α) is an 

Table 2 Association between RNA m6A methylation and risk factors of vascular diseases

Risk factor m6A-related molecules Expression m6A levels Main function Reference

Obesity m6A-SNP rs6859 (3ʹUTR-PVRL2) – – Increases LDL, total cholesterol, and triglycerides
Causes lipid metabolism dysfunction

[65]

zfp217 Upregulated Reduced Decreases m6A-YTHDF2, leading to obesity [66]

FTO Downregulated Increased Decreases total cholesterol and LDL
Suppresses the formation of atherosclerotic plaques

[67]

Upregulated Reduced Promotes the formation and differentiation of 
adipocytes

[68]

FTO rs9939609 variant – – Increases triglyceride, SCD40L, visfatin, homocysteine, 
and total cholesterol levels
Increases body mass index

[69, 70]

FTO rs1421085 variant – – Promotes macronutrient intake, obesity, and T2DM [71]

T2DM FTO Upregulated Reduced Increases FOX1, G6PC, and DGAT2, leading to dys-
function of lipid and glucose metabolism

[72]

IGF1-AKT-PDX1 Downregulated Reduced Inhibits β-cell arrest and insulin secretion, leading to 
glucose intolerance and T2DM

[74]

METTL14 Upregulated Increased Affects the differentiation and function of β-cells [75]

Hypertension m6A-SNPs rs9847953 and rs197922 – – Affects blood pressure regulation [76]

MC4R rs17782313 variant – – Affects diastolic pressure and blood pressure [77]

FTO Downregulated Increased Protects against tachycardia, hypertension, and 
vascular resistance

[78]

Atheroslerosis METTL3 Upregulated Increased Increases m6A-FOXO1, increasing ICAM-1 and VCAM-
1, leading to atherosclerosis

[35, 79]

METTL14 Upregulated Increased Increased by TNF-α, leads to atherosclerosis [79]

FTO rs9939609 variant – – Important risk factor of atherosclerosis [70]
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inflammatory factor that activates and enhances the 
inflammatory response. Recent studies have shown that 
TNF-α increases METTL14 expression, which results 
in endothelial inflammation and atherosclerosis [79]. 
Additionally, Aijala et  al. have found that rs9939609, an 
abnormal variant of FTO, is an important risk factor of 
atherosclerosis [70].

RNA m6A modifications in vascular disease
Studies have shown that the development of many vascu-
lar diseases is associated with RNA m6A modifications. 
We discuss these associations, which are further pre-
sented in Table 3.

Coronary heart disease
CHD is caused by coronary luminal narrowing or occlu-
sion due to abnormal lipid metabolism, local vascular 
wall inflammatory response, and other triggers. Previous 
studies have shown increased m6A modifications and 
lowered FTO expression in tissues subjected to myocar-
dial infarction. RNA m6A modifications regulate cardiac 
contractility, cardiomyocyte differentiation, and metab-
olism. A study by Chen et  al. has shown that increased 
METTL14 expression leads to an increase in m6A, which 
in turn aggravates vascular calcification [80]. Elevated 
FTO reduces m6A methylation of SERCA2a, MY617, and 
RY2, and increases the stability of these mRNAs, improv-
ing cardiac contractility and reducing fibrosis in the 
infarcted area [70].

On the other hand, genetic polymorphisms in FTO 
have been shown to influence the development of CHD. 
A study by Aijala et al. has shown that the FTO rs9939609 
(T > A) variant regulates the morbidity of CHD [70]. The 
SNP rs12286 at the 3ʹUTR of ADAMTS7 is associated 
with CHD by affecting the m6A modification of RNA 
[81].

The detection of m6A modifications on RNA can be 
used as a potential diagnostic marker for myocardial 
infarction. A study by Saxena et  al. has demonstrated 
that m6A methylation of specific mRNAs is a candidate 
marker for myocardial infarction diagnosis [82].

Stroke
Stroke is caused by intracranial vascular stenosis or 
occlusion. Previous studies have shown that RNA 
m6A modification is closely related to stroke. However, 
research on this topic is still in its infancy. Chokkalla 
et  al. have shown that many poststroke biological pro-
cesses, such as inflammation, apoptosis, and transcrip-
tional regulation, might be modulated by differential 
expression levels of FTO. RNA m6A modification may be 
a relevant indicator of poststroke pathophysiology [83].

Aortic aneurysm
An aortic aneurysm is an enlargement of the aorta, diag-
nosed when its diameter exceeds 50% of the normal 
vascular diameter. Aortic aneurysms can lead to aortic 
rupture and death. Several underlying causes may exist. 

Table 3 Association between m6A methylation and vascular diseases

Vascular diseases m6A-related molecules Expression m6A levels Main function Reference

Coronary heart disease METTL14 Upregulated Increased Aggravates vascular calcification [80]

FTO Upregulated Reduced Decreases m6A modification of SERCA2a, MY617, and 
RY2, reducing fibrosis in infarcted areas

[70]

FTO rs9939609 variant – – Regulates CHD morbidity [70]

SNP rs12286 (ADAMTS7) – – Affects RNA m6A modification [81]

Stroke FTO Downregulated Increased Modulates poststroke biological processes (inflamma-
tion, apoptosis, and transcriptional regulation)

[83]

Aortic aneurysm FTO Downregulated Increased Induces the formation of aneurysmal smooth muscle 
cells, macrophage infiltration, and neovascularization

[84]

METTL14 and YTHDF3 Upregulated Increased Induces aneurysmal smooth muscle cell formation, 
macrophage infiltration, and neovascularization

[84]

Aortic Dissection METTL3 Upregulated Increased Affects hypoxia stress, inducing the differentiation of 
adipose-derived stem cells into smooth muscle cells
Regulates macrophage differentiation and T cells 
number and function

[86, 87]

WTAP Upregulated Increased Participates in a protein complex that affects smooth 
muscle cell and endothelial cell proliferation and 
apoptosis

[89]

HNRNPA2/B1 Upregulated – Affects smooth muscle cell differentiation, increasing 
systolic type smooth muscle cells

[90]

YTHDF2 Downregulated – Decreases inflammation and increases vascular recon-
struction and metastatic progression

[91]
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Previous studies have shown that RNA m6A modifica-
tion has a positive relationship with abdominal aortic 
aneurysm formation and rupture [84]. FTO decrease, 
YTHDF3 increase, or METTL14 increase may lead to the 
formation of aneurysmal smooth muscle cells (SMCs), 
macrophage infiltration, and neovascularization; these 
pathological changes may elicit the development of an 
aneurysm [84].

Aortic dissection
Aortic dissection is another life-threatening vascular 
emergency. At present, its exact molecular mechanism 
is unclear. Studies have shown that the main pathological 
changes associated with AD are inflammation of vascular 
tissues, increased apoptosis of ECs and SMCs, decreased 
cell proliferation, decreased extracellular matrix, and 
congenital dysplasia of connective tissue [85].

Previous studies have shown that METTL3 plays an 
important role in the development of AD. METTL3 
affects hypoxia stress, which promotes the differentiation 
of adipose-derived stem cells into SMCs [86]. A recent 
study by Liu et al. has shown that macrophage differen-
tiation and the number and function of T cells can be 
regulated by METTL3 through modulation of STAT1 
expression and the IL-2–STAT5 signaling pathway [87].

In a study performed using human umbilical vein 
endothelial cells, WTAP combined with Hakai, Virilizer 
homolog, KIAA0853, RBM15, BCLAF1, and THRAP3 to 
form a protein complex that functioned as an RNA pro-
cessing machine and affected cell proliferation [88]. Sub-
sequent research has shown that WTAP exerts different 
effects on the proliferation and apoptosis of SMCs and 
ECs. Increased WTAP causes an increase in EC prolif-
eration and a decrease in SMC proliferation; decreased 
WTAP causes a decrease in EC proliferation, an increase 
in SMC proliferation, and an increase in DNA synthesis 
[89].

Readers also play an important role in the formation 
of AD. In a study by Wang et al., HNRNPA2/B1 affected 
the differentiation of SMCs, which led to an increase in 
systolic type SMCs. Decreases in systolic type SMCs are 
a key factor in AD formation. Therefore, HNRNPA2/
B1 maybe a potential target for the treatment of vascu-
lar degenerative disease [90]. Additionally, a decrease in 
YTHDF2 has been shown to lead to reduced inflamma-
tion, enhanced vascular reconstruction, and metastatic 
progression [91].

Techniques for the detection of RNA m6A modifications
RNA m6A methylation was first identified in 1974; how-
ever, it was rediscovered in 2012 with the emergence of 
next-generation sequencing technology that enabled its 
detection through the transcriptome [17, 18]. In recent 

years, with the improvement in the technology for detec-
tion of RNA m6A modifications, research on m6A has 
deepened. Most of the current knowledge from RNA 
research is stored in the RNA epitranscriptome collec-
tion (REPIC) database [92]. In this review, common tech-
nologies for the detection of RNA m6A modifications are 
discussed.

Methylated RNA immunoprecipitation sequenc-
ing  (MeRIP-seq and m6A-seq) is the oldest and most 
widely used method to detect m6A-methylated RNA. 
Random RNA fragmentation, m6A-specific methyl-
ated RNA immunoprecipitation, and next-generation 
sequencing are the basis of the MeRIP-seq and m6A-
seq technique. Despite its robust technology, it presents 
several disadvantages, including: difficulty in accurately 
locating m6A, antibody bias, difficult data analysis, low 
reproducibility, and the requirement of large amounts of 
RNA [93, 94].

Photo-crosslinking-assisted m6A sequencing 
(PA-m6A-seq), m6A individual-nucleoside-resolution 
cross-linking and immunoprecipitation (miCLIP), m6A 
cross-linking immunoprecipitation (m6A-CLIP), and 
m6A-level and isoform-characterization sequencing 
(m6A-LAIC-seq) were subsequently established. Their 
accuracy gradually improved and the required sample 
amounts gradually decreased; however, because the use 
of antibodies is still required, antibody bias cannot be 
avoided [95–99].

Site-specific cleavage and radioactive-labelling followed 
by ligation-assisted extraction and thin-layer chromatog-
raphy (SCARLET), RNA-endoribonuclease-facilitated 
sequencing (m6A-REF-seq), m6A-sensitive RNA diges-
tion and sequencing (MASTER-seq), and deamination 
adjacent to RNA modification targets (DART-seq) are 
recent, quantitative, and antibody-free techniques. Their 
detection ability is accurate and fast, and the amount of 
RNA required for each detection is low. However, these 
technologies are still in their primary stages and cannot 
be used on a large scale [100–103].

Conclusion and future prospects
Previous studies have shown that RNA m6A modifica-
tions play a critical role in the regulation of vascular dis-
eases. However, the research on m6A-methylated RNA is 
still in its infancy and many unknown fields need to be 
further explored. First, available studies address individ-
ual components of the m6A regulatory system; research 
on the interaction between different components is lack-
ing. Second, the earlier studies were performed at the 
cellular and small-animal level; further large animal-
level studies and clinical research need to be performed. 
Third, although several technologies for the detection 
of m6A-methylated RNA have been recently developed, 
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many are still in their primary stage and cannot be widely 
used. Fourth, many RNA epigenetic modifications have 
already been identified. The interrelationship between 
RNA methylation and other RNA genetic modifications 
is unclear and considered a future research direction.

In conclusion, RNA m6A modifications, as the most 
common cellular process of RNA regulation, participate 
in a variety of biological functions and play an important 
role in epigenetics. A large amount of evidence shows 
that RNA N6-methyladenosine modifications play a key 
role in the morbidity caused due to vascular diseases. 
Further research on the relationship between RNA 
N6-methyladenosine modifications and vascular diseases 
is necessary to understand pathophysiological mecha-
nisms at the gene level and to provide new tools for the 
diagnosis and treatment of vascular diseases.
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