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Abstract 

Background New onset postoperative atrial fibrillation (POAF) is the most common complication of cardiac surgery, 
with an incidence ranging from 15 to 50%. This study aimed to develop a new nomogram to predict POAF using 
preoperative and intraoperative risk factors.

Methods We retrospectively analyzed the data of 2108 consecutive adult patients (> 18 years old) who underwent 
cardiac surgery at our medical institution. The types of surgery included isolated coronary artery bypass grafting, valve 
surgery, combined valve and coronary artery bypass grafting (CABG), or aortic surgery. Logistic regression or machine 
learning methods were applied to predict POAF incidence from a subset of 123 parameters. We also developed a 
simple nomogram based on the strength of the results and compared its predictive ability with that of the CHA2DS2-
VASc and POAF scores currently used in clinical practice.

Results POAF was observed in 414 hospitalized patients. Logistic regression provided the highest area under the 
receiver operating characteristic curve (ROC) in the validation cohort. A simple bedside tool comprising three varia-
bles (age, left atrial diameter, and surgery type) was established, which had a discriminative ability with a ROC of 0.726 
(95% CI 0.693–0.759) and 0.727 (95% CI 0.676–0.778) in derivation and validation subsets respectively. The calibration 
curve of the new model was relatively well-fit (p = 0.502).

Conclusions Logistic regression performed better than machine learning in predicting POAF. We developed a nomo-
gram that may assist clinicians in identifying individuals who are prone to POAF.

Keywords Cardiac surgery, Surgical complications, Atrial fibrillation, Risk stratification

Introduction
New-onset postoperative atrial fibrillation (POAF) is the 
most common complication after adult cardiac surgery, 
with a reported incidence rate from 15 to 50% [1]. New-
onset atrial fibrillation, including paroxysmal, persistent, 
or permanent after any heart surgery, may be classified as 
POAF. It has been found that POAF after cardiac surgery 
is associated with a substantial risk of adverse outcomes, 

including increased mortality, postoperative stroke, res-
piratory infections, and gastrointestinal dysfunction [2]. 
Additionally, POAF increases hospitalization length and 
costs [3]. In contrast, POAF prophylaxis can cause hypo-
tension, bradycardia, or heart block. Identifying patients 
prone to POAF makes personalized prophylactic treat-
ment feasible. Several predictive models have been devel-
oped to achieve this goal. Our study aimed to develop a 
simple yet valid risk assessment model to predict POAF 
after cardiac surgery. Machine learning and logistic 
regression algorithms were used to develop a predictive 
model. To our knowledge, this is the first study to com-
pare different algorithms for developing a POAF risk 
model.
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Methods
Study population
This retrospective study included 2108 consecutive adult 
patients (age ≥ 18 years) who underwent cardiac surgery 
at the First Medical Center of Chinese PLA General Hos-
pital (Beijing, China) from January 2018 to December 
2020. The surgery types included isolated coronary artery 
bypass grafting (CABG), valve surgery, concomitant 
valve and CABG, and valve and ascending aorta surgery. 
Elective, urgent, and emergency procedures were also 
performed. The exclusion criteria were: age < 18  years, 
incomplete or non-availability of medical records, non-
sinus electrocardiogram before surgery, medical history 
of atrial fibrillation or atrial flutter, pacemaker implan-
tation, history of radiofrequency ablation or Cox maze 
procedure for arrhythmia, and death during the perioper-
ative period. The final sample consisted of 1587 patients. 
The study was approved by the institutional review board 
of the Chinese PLA General Hospital (approval number 
S2022-360-01). Given the observational nature of this 
study, the requirement for informed consent was waived. 
All identifiable information about the patients was hid-
den, and their identities could not be determined based 
on context. This study was conducted following the Dec-
laration of Helsinki and its amendments.

Study endpoint
The primary outcome was the occurrence of new-onset 
POAF, as a binary value. POAF was defined as any epi-
sode of atrial fibrillation (AF) (occurrence of irregular 
heart rhythm, without detectable P waves) lasting more 
than 30  s on cardiac telemetry or requiring treatment 
(including antiarrhythmic drugs, such as amiodarone 
or electrical cardioversion) during hospitalization. This 
standard is consistent with most previous studies [2]. All 
patients underwent continuous ECG monitoring in the 
ICU for at least 48  h postoperatively. After the telem-
etry was removed, a standard 12-lead ECG was routinely 
recorded on the first and third day after leaving the ICU. 
Even without telemetry, episodes of AF were detected 
by a change in clinical status, which led to an immedi-
ate bedside electrocardiogram. ECG and telemetry were 
double-checked by a cardiac surgeon and an electrophys-
iologist. If there was a disagreement, a third cardiologist 
was required to judge the ECGs.

Data collection and statistical analysis
All clinical data were extracted from the electronic 
medical records of our hospital. Two separate investi-
gators independently collected the data and proofread 
each other’s collections. A total of 123 preoperative and 
intraoperative characteristics were collected from all 
patients, including demographic data, medical history, 

preoperative medications, preoperative laboratory tests, 
preoperative echocardiography, electrocardiography, 
and intraoperative variables. All collected data were pre-
processed and cleaned before analysis, and no extreme or 
missing values were found. The normality of continuous 
variables in baseline characteristics was assessed using 
the Shapiro–Wilk test. Normally distributed continuous 
data were estimated by Student’s t-test and demonstrated 
as mean ± standard deviation (SD). In the case of non-
normally distributed variables, Mann–Whitney U tests 
were used for comparison and are presented as median 
(IRQ, 25–75th percentiles). Categorical variables were 
presented as percentages and compared using the Pear-
son chi-square test. Univariate analysis was used to select 
variables for further inclusion in the multivariate logis-
tic regression models based on p-values of less than 0.1. 
Multivariate analysis was performed using stepwise logis-
tic regression with backward selection, and two-sided p 
values < 0.05 were considered an statistically significant. 
Comparisons between the areas under the receiver oper-
ating characteristic (ROC) curves were performed using 
DeLong’s test. The Hosmer–Lemeshow test was used to 
calibrate the model. Clinical data were recorded and tab-
ulated using Microsoft Excel, and all analyses were per-
formed using R software, version 4.1.1.

Model development
The data collected were randomly divided into deriva-
tion subset and validation subsets. The derivation sub-
set contained 70% of patients and was used for training 
the model, whereas the validation subset contained the 
remaining 30% of patients and was used for model test-
ing. We applied logistic regression and three machine 
learning methods that are popular in dealing with binary 
problems: random forests (Forest), Naïve Bayes (Bayes), 
and k-Nearest Neighbor (KNN). Univariate analysis was 
performed to select variables based on p-values of less 
than 0.1. Our study examined whether the three machine 
learning methods should use all 123 parameters or only 
those selected by univariate analysis to select the best 
scenario. For the logistic regression (Logistic) model, 
only data selected by univariate analysis were included in 
the multivariable analysis. We also attempted a ten-fold 
cross-validation process in which the derivation sub-
set was randomly divided into ten almost equal groups, 
called folds. In every test, model training was performed 
on a smaller subset consisting of nine folds, and then 
the model’s performance was evaluated using the with-
held fold. This procedure was performed for all ten folds, 
therefore, we repeated this process ten times to obtain 
ten individual probabilities. The final performance for 
each model was the mean of the ten individual probabili-
ties. The models built from the derivation subset were fed 
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into the validation subset for validation. A validation sub-
set was used to compare the performance of each model, 
and the one with the best performance was chosen to 
construct the nomogram.

Results
Characteristics of patients
A total of 2108 consecutive adult patients underwent 
cardiac surgery between January 1, 2018, and December 
31, 2020, of whom 1587 were enrolled (Fig. 1). The basic 
demographic and surgical characteristics of patients are 
summarized in Table  1. The median age was 58.0  years 
(49.0–66.0), 517 (32.6%) were women, 1070 (67.4%) were 
men, and 634 (39.9%) patients had a history of smoking. 
The percentage of patients with hypertension, COPD, 
diabetes, and renal dysfunction was 47.9%, 5.9%, 20.9%, 
and 3.8%, respectively. Valve surgery accounted for 
45.3% of cases, CABG for 36.3%, and concomitant valve 
and CABG surgery or aortic surgery for the rest, among 
which 5.7% were emergent cases. The median operation 
duration was 280.0  min (235.0–340), and the median 
cardiopulmonary bypass time (CPB) time was 116.0 min 
(85.0–161.0).

Derivation and validation subsets
The randomly assigned derivation and validation sub-
sets enrolled 1118 (70.4%) and 469 (29.6%) patients, 
respectively. No significant differences were observed 

in variables between the derivation and validation sub-
sets. There were 293 and 121 patients who developed 
POAF in the derivation and validation subsets, respec-
tively (26.2% vs 25.8%, p = 0.792). Results of the uni-
variate analysis of parameters associated with POAF in 
the derivation are reported in Table 2 (p < 0.1). Patients 
who developed POAF were older, heavier, and had 
higher ASA (American Society of Anesthesiologists 
Physical Status) IV/V and NYHA (New York Heart 
Association) III/IV percentages. They also exhibited 
larger left atrial diameter (LAd), interventricular sep-
tum (IVS), and left ventricular posterior wall (LVPW) 
but lower left ventricular ejection fraction (LVEF) on 
echocardiography. Among the laboratory parameters, 
lower red blood cell (RBC) count, platelet count, total 
plasma protein, plasma albumin, and estimated glo-
merular filtration rate (eGFR) were associated with an 
increased frequency of POAF. Patients who underwent 
valvular surgery, concomitant CABG and valvular sur-
gery were more likely to develop POAF. Intraoperative 
medication usage demonstrated no significant differ-
ence, except for inotropic drugs such as epinephrine, 
norepinephrine, and isoproterenol, which were asso-
ciated with POAF. Univariate analysis also suggested 
that surgical characteristics, such as blood loss volume, 
packed red blood cell (pRBC) transfusion volume, fresh 
frozen plasma (FFP) transfusion volume, CPB, and 
anesthesia time were associated with POAF.

Fig. 1 The flow chart displays the inclusion and exclusion of patients
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Model discrimination
Figure 2 depicts the performance of the different mod-
els. In the derivation cohort, the Forest model had an 
area under the ROC curve of 0.762 (95% CI 0.730–
0.793), followed by the second was the KNN model 
(ROC: 0.731, 95% CI 0.699–0.762). The logistic model 
yielded a ROC of 0.717 (95% CI 0.683–0.750) in the 
training cohort, which only ranked higher than that 
of the Bayes model (ROC: 0.714, 95% CI 0.680–0.762), 
exhibiting the best performance (ROC: 0.728, 95% CI 
0.673–0.767–0.779) in the validation cohort. Delong’s 
test indicated that all four models had relatively equal 
discrimination performance in the two cohorts (all 
p > 0.05). Notably, compared with the derivation cohort, 
both the Forest and KNN models exhibited a decline in 
predictive ability in the validation cohort, whereas the 
logistic model demonstrated the opposite.

Development and calibration of the nomogram
Considering the performance of each model, we devel-
oped a nomogram based on the logistic model. The 
important independent predictive factors identified 
by multivariate analysis were age (OR, 1.06; 95% CI 
1.04–1.07; p < 0.001), LAd (OR, 1.71; 95% CI 1.41–
2.10; p < 0.001), surgery type (CABG: OR, 0.67; 95% CI 
0.46–0.96. Valve + CABG: OR, 1.46; 95% CI 0.87–2.46. 
Valve + aorta: OR, 1.50; 95% CI 0.90–2.46, p = 0.03). 
In the nomogram, all these variables were assigned a 
score on a point scale so that the total score could be 
achieved by adding them. To use the nomogram, the 
specific points (red dots) of individual patients are 
located on each variable axis. Figure 3 displays the pre-
diction of POAF occurrence in a 39-year-old patient 
with a left atrial diameter of 3.8  cm who underwent 
aortic valve and ascending aorta replacement. Red lines 

Table 1 Demographical and surgical characteristics of all patients

ASA American Society of Anesthesiologists Physical Status, CKD Chronic kidney disease, COPD chronic obstructive pulmonary disease, CPB cardiopulmonary bypass, 
eFGR estimated glomerular filtration rate, IQR interquartile range, MI myocardial infarction, NYHA New York Heart Association

Variables Overall (n = 1587)

Demographic data

 Age, years, median (IQR) 58.0 (49.0–66.0)

 Sex, male, n (%) 1070 (67.4%)

 Body-mass index, kg/m2 median (IQR) 25.2 (22.7–27.4)

 Smoking, n (%) 634 (39.9%)

 NYHA class I/II/III/IV, n (%) 439(27.7%)/654(41.2%)/442(27.9%)/52(3.3%)

 ASA class I/II/III/IV/V, n (%) 8(0.5%)/292(18.4%)/837(52.7%)/448(28.2%)/
2(0.1%)

 EuroSCORE II, median (IQR) 1.3 (0.8–2.8)

 CHA2DS2-VASc score, median (IQR) 2.0 (1.0–3.0)

Medical history, n (%)

 Hypertension 760 (47.9%)

 COPD 94 (5.9%)

 Previous MI 84 (5.3%)

 Previous stroke 86 (5.4%)

 Diabetes 332 (20.9%)

 CKD 61 (3.8%)

 eGFR, ml/min/1.73  m2, median (IQR) 84.1 (67.5–102.7)

 Surgery characteristics

Surgery type, n (%)

 Valve 719 (45.3%)

 CABG 576 (36.3%)

 Valve + CABG 128 (8.1%)

 Valve + aorta 164 (10.3%)

Emergency, n (%) 91 (5.7%)

 CPB time, min, median (IQR) 116.0 (85.0–161.0)

 Clamping time, min, median (IQR) 88.0 (64.0–124.0)

 Operation duration, min, median (IQR) 280.0 (235.0–340)
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Table 2 Univariable analyses of the patients in the derivation cohort

FFP fresh frozen plasma, HCT hematocrit, Hgb hemoglobin, MIS minimally invasive surgery, PLT platelet, Scr serum creatinine

Variables No POAF(n = 825) POAF (n = 293) P valve

Age, years, median (IQR) 56.0 (45.0–65.0) 63 (55.0–69.0) < 0.001

Weight, kg, median (IQR) 69.5 (60.0–78.0) 67.0 (58.8–75.9) 0.083

ASA, n (%) 0.002

 I 6 (0.7%) 0 (0.0%)

 II 174 (21.1%) 38 (13.0%)

 III 440 (53.3%) 159 (54.3%)

 IV 204 (24.7%) 95 (32.4%)

 V 1 (0.1%) 1 (0.34)

NYHA 0.015

 I 241 (29.2%) 69 (23.5%)

 II 342 (41.5%) 123 (42.0%)

 III 224 (27.2%) 85 (29.0%)

 IV 18 (2.2%) 16 (5.5%)

EuroSCORE II, median (IQR) 1.18 (0.75–2.35) 1.83 (0.93–3.70) < 0.001

Medical history, n (%)

 Preoperative  Diuretics 532 (64.5%) 218 (74.4%) 0.002

 CKD 20 (2.4%) 15 (5.1%) 0.037

Preoperative laboratory values

 RBC, ×  109/L, median (IQR) 4.45 (4.07–4.82) 4.28 (3.88–4.75)  < 0.001

 Hgb, g/dL, median (IQR) 136 (121–147) 131 (118–145) 0.020

 HCT, %, median (IQR) 0.39 (0.36–0.43) 0.38 (0.35–0.42) 0.012

 Platelet, ×  109/L, median (IQR) 202 (166–245) 185 (150–229)  < 0.001

 Total plasma protein, g/L, median 67.7 (64.0–71.8) 66.6 (63.5–70.8) 0.019

 Plasma albumin, g/L, median, (IQR) 41.2 (38.5–43.9) 40.4 (37.4–43.0) 0.001

 Scr, μmoI/L, median, (IQR) 77.9 (66.7–89.3) 80.1 (68.6–92.5) 0.031

 Blood urea nitrogen, mmol/L, median 5.7 (4.5–6.7) 6.3 (5.0–7.5) < 0.001

 eGFR, ml/min/1.73 m2, median (IQR) 88.0 (71.0–106.0) 74.8 (61.5–91.7) < 0.001

Preoperative echocardiography

 LAd, mm, median (IQR) 37.0 (33.0–42.0) 40.0 (35.0–46.0) < 0.001

 IVS, mm, median (IQR) 11.0 (10.0–12.0) 12.0 (10.0–13.0) 0.002

 LVPW, mm, median (IQR) 11.0 (10.0–12.0) 11.0 (10.0–13.0) 0.002

 LVEF, %, median (IQR) 61.0 (56.0–68.0) 60.0 (52.0–66.0) 0.008

Surgery characteristics, n (%)

 Surgery type < 0.001

 Valve 389 (47.2%) 136 (46.4%)

 CABG 307 (37.2%) 90 (30.7%)

 Valve + CABG 42 (5.1%) 36 (12.3%)

 Valve + aorta 87 (10.5%) 31 (10.6%)

 MIS, n (%) 183 (22.2%) 47 (16.0%) 0.032

Inotropic drug, n (%) 57 (0.48%) 44 (15%)  < 0.001

PLT transfusion 197 (23.9%) 102 (34.8%) 0.001

 FFP transfusion, unit, median (IQR) 4.2 (0.0–5.2) 4.9 (0.0–5.9)  < 0.001

pRBC transfusion, unit, median (IQR) 2.0 (0.0–4.0) 2.5 (0.0–4.0)  < 0.001

Blood loss, ml, median (IQR) 300 (300–400) 400 (300–500)  < 0.001

Urine output, ml, median (IQR) 870 (500–1300) 800 (400–1290) 0.045

CPB time, min, median (IQR) 114 (84–157) 125 (92–170) 0.017

Anesthesia time, min, median (IQR) 325 (280–390) 340 (290–405) 0.093

Operation time, min, median (IQR) 270 (230–340) 285 (240–350) 0.077
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and dots are drawn upward to determine the points 
received by each variable; the sum of these points 
(-0.656) is located on the Total Score axis, and a line is 
drawn downward to the lowest axes (probability scale) 

to determine the probability of POAF (14.3%) (Fig.  3). 
The area under the ROC curve of the nomogram was 
0.726 (95% CI 0.693–0.759) and 0.727 (95% CI 0.676–
0.778) in the training and testing cohorts, respectively. 

Fig. 2 Area under the ROC curve showing the performance of different models in predicting POAF in derivation (A) and validation (B) cohorts

Fig. 3 A constructed nomogram for predicting POAF. For surgical classification variables, their distributions are reflected by the box size (boxes 1 to 
4 represent valve surgery, CABG, concomitant valve and CABG surgery, and aorta surgery, respectively). LAd left atrial diameter, Pr probability
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In comparison, the ROC of POAF and CHA2DS2-VASc 
scores were 0.576 (95% CI 0.535–0.616) and 0.528 (95% 
CI 0.478–0.577, Fig. 4). The calibration curve revealed 
that the nomogram had fair agreement between the 
observed and expected rates of POAF in both the deri-
vation (p = 0.157) and validation cohorts (p = 0.502, 
Fig. 5).

Discussion
Postoperative atrial fibrillation (POAF) is the most com-
mon complication after adult cardiac surgery, with 
approximately 25% of patients undergoing coronary 
artery bypass grafting (CABG), 30% undergoing isolated 
valvular surgery, and 40%–50% undergoing combined 
valve and CABG procedure [4]. Our study demonstrated 
an overall POAF rate of 26.1%, which was slightly lower 
than that reported in most previous studies [5], given 
that valve or concomitant valvular surgery accounted 
for 63.7% of all cases. Our study cohort was younger age 
and had a lower comorbidity rate, which may explain this 
difference.

Although some studies suggest that POAF is transient 
and benign after cardiac surgery, a growing number of 
studies indicate that it may be related to a higher mor-
tality rate accompanied by numerous complications, 
including stroke, congestive heart failure, gastrointestinal 
dysfunction, and an eight-fold possibility of subsequent 
atrial fibrillation, as well as ICU stay time and costs [6, 
7]. As a result, reducing POAF incidence may benefit 
patients medically and financially. Recent advances in 
equipment and improved surgical techniques have sig-
nificantly reduced cardiac surgery-associated morbidity 
and mortality, however, the incidence of POAF remains 
relatively unchanged [5].

It is of great interest to clinicians to stratify patients 
based on their predisposition to POAF. Identifying high-
risk patients and prophylactic treatment are more cost-
effective than implementing preventive methods for 

Fig. 4 Area under the ROC curve depicts the performance of the 
nomogram, POAF score, and CHA2DS2-VASc score. CI confidence 
interval

Fig. 5 Calibration curve of the model in the derivation (A) and validation (B) cohort. The Y-axis represents the actual POAF incidence rate, and the 
x-axis represents the predicted rate. The diagonal line represents a perfect prediction by the ideal model. The red line represents the performance of 
the nomogram, of which a closer fit to the diagonal line represents a better prediction
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all patients. This also minimizes prophylaxis caused by 
the side effects such as unstable hemodynamics, brady-
cardia, or heart arrest. Distinct preoperative risk mod-
els have been developed to achieve this goal. Among 
them, the most widely used models are the POAF and 
 CHA2DS2-VASc scores which are well-known for their 
simplicity and ability to predict POAF.

The POAF score had a relatively better performance 
than the CHA2DS2-VASc score in our cohort, with an 
area under the receiver operating characteristic (ROC) 
curve of 0.576 (95% CI 0.535–0.616) and 0.528 (95% 
CI 0.478–0.577), respectively, which is consistent with 
most previous studies [8, 9]. Utilizing CHA2DS2-VASc 
or POAF scores to identify patients prone to develop-
ing POAF makes it possible to adopt personalized pre-
ventative strategies instead of providing all patients 
with prophylactic treatment. However, the observed 
performance is not very promising. Some of these rea-
sons may be related to the two risk models. The POAF 
score was derived from a population with non-cardiac 
thoracic surgery, which may be the primary reason for 
poor performance in the cardiac surgery population. 
The CHA2DS2-VASc score was originally developed to 
guide antithrombotic treatment in patients with AF or 
atrial flutter and was subsequently found to help predict 
POAF after cardiac surgery. Intraoperative data were 
not included in determining the CHA2DS2-VASc score 
[10]. Other important variables, such as parameters of 
preoperative echocardiography, electrocardiogram, and 
intraoperative drugs, were also excluded in the process 
of developing CHA2DS2-VASc and POAF scores [9, 10]. 
These preoperative and intraoperative characteristics 
have been widely validated worldwide to increase POAF 
susceptibility [11–13]. Furthermore, these two predic-
tive models were originally designed and developed in 
Europe, where participants were primarily Caucasian and 
possibly had a risk factor for POAF. A growing body of 
evidence indicates that ethnicity and genetic factors are 
related to POAF [1, 14, 15]. Even Asians, Chinese, and 
Malay Indians may be at a higher risk than Indians [16]. 
Therefore, the differences in patient characteristics and 
basic cardiac conditions from the original studies might 
explain the low performance of CHA2DS2-VASc and 
POAF scores.

Although POAF is not a unique complication of car-
diac surgery, its incidence rate is significantly higher than 
that of non-cardiac surgery (1%–15%). Several studies 
have depicted that the pathophysiology of POAF var-
ies between the types of surgery [17]. The mechanism of 
POAF after cardiac surgery has not yet been fully eluci-
dated. The reported predisposing factors may include 
but are not limited to age, sex, left atrial diameter (LAd), 
blood pressure, and chronic obstructive pulmonary 

disease (COPD). However, a few parameters demon-
strated statistical differences in univariable analysis. In 
contrast, multivariate analysisidentified age, LAd, and 
surgical type as significant independent predictors in 
our study. The nomogram built on the strength of these 
results demonstrated discriminative ability with ROC 
of 0.727 (95% CI 0.676–0.778) in the validation subset. 
The calibration test maintained an increasing incidence 
of POAF with an increasing score, calibrating best in 
patients at low risk but overpredicting the incidence with 
higher scores.

It is generally agreed that there are multiple mecha-
nisms in POAF development and that age is the most 
recognized risk factor and predictor [18, 19]. The reasons 
for POAF incidence correlated with aging are diverse. 
Aging leads to myocardial fibrosis and collagen deposi-
tion in the atrium, rendering the atria more vulnerable to 
surgical conditions such as inflammation, hypovolemia, 
ischemia, and activated autonomic nervous system. 
Fibrosis and degeneration in the atrium weaken the cou-
pling structure between myocardial fibers, resulting in 
slowed electrical conduction. Due to the different elec-
trical properties of fibrotic and normal cardiomyocytes, 
this change can predispose to abnormal conduction and 
reentry of arrythmias [20].

Preoperative echocardiography is also a series of con-
sistent risk indicators across multiple studies, among 
which left atrial dilation is the most recognized. Although 
there is heterogeneity in different studies on how LAd is 
defined, a left atrium diameter of more than 40 mm is 
mostly adopted. LAd may result from a reconstruction 
of atria due to pressure or volume overload caused by 
pathophysiological conditions such as mitral valve regur-
gitation, hypertension, and congestive heart failure. Left 
atrial reconstruction is also a manifestation of myocar-
dial fibrosis [20]. A 2020 meta-analysis demonstrated that 
POAF patients had a larger mean LAd of 2.01 (95% CI 
1.03–2.99) mm compared to patients without POAF [21].

Substantial evidence suggests that valvular surgery is 
associated with a greater incidence of POAF than iso-
lated CABG. Some studies have demonstrated that POAF 
is most common after mitral valve interventions [22], 
whereas others have revealed that aortic surgery has the 
highest POAF rate [23]. However, patients undergoing 
valve or combined valvular surgery usually experience 
increased surgical trauma and longer time under car-
diopulmonary bypass (CPB), which leads to increased 
sympathetic tone. Activated sympathetic nerves shorten 
the effective refractory period of atrial myocytes associ-
ated with POAF. This is supported by the fact that drugs 
with sympathetic activity enhance POAF. In contrast, 
β-blocking agents that can decrease sympathetic tone are 
significantly reduced.
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Machine learning (ML) algorithms have gained popu-
larity in medicine as a branch of artificial intelligence. 
The definition of ML and its differences from statisti-
cal models have not yet been defined [24]. In this study, 
we adopted the classification that ML is data orientated, 
whereas traditional algorithms such as logistic regression 
(LR) are based on theory and assumptions. Some stud-
ies demonstrated that ML could be superior to LR in 
building prediction models because ML had better per-
formance when dealing with a large number of potential 
predictors and did not require independent or nonlinear 
[25, 26], the outcomes of some studies were found to be 
otherwise [27].

In our study, LR depicted the second-best ROC in the 
derivation cohort and achieved the best ROC in the val-
idation cohort. A main drawback of ML is the elevated 
risk of overfitting, which may result from down sampling 
or insufficient sample size. In this study, LG exhibited a 
better performance in the validation cohort than in the 
derivation cohort, which contrasts with the performance 
of all ML models. Based on accuracy, transparency, and 
interpretability, we selected LR to build the prediction 
model.

Study limitations
The limitations of our study are that patients in the deri-
vation cohort may not be sufficient for ML algorithms, 
which tend to yield better performance with increasing 
cases. The second limitation was the inherent limitations 
of this retrospective study. Third, this was a single-center 
study. The nomogram requires a larger, multicenter sam-
ple for external validation. Finally, the patients did not 
receive continuous electrocardiographic monitoring until 
discharge, therefore, episodes of asymptomatic POAF 
may have been missed, leading to an underestimation of 
the POAF incidence.

Conclusions
We constructed a nomogram to identify patients at risk 
of developing POAF after cardiac surgery to take pro-
phylactic measures more efficiently. This will likely yield 
better discriminatory power than the widely used POAF 
and CHA2DS2-VASc scores. However, the nomogram 
requires further validation using larger, multicenter 
samples.

Abbreviations
AF  Atrial fibrillation
ASA  American Society of Anesthesiologists Physical Status
CABG  Coronary artery bypass graft
CI  Confidence interval
CKD  Chronic kidney disease
COPD  Chronic obstructive pulmonary disease
CPB  Cardiopulmonary bypass

ECG  Electrocardiogram
eFGR  Estimated glomerular filtration rate
FFP  Fresh freezing plasma
HCT  Hematocrit
Hgb  Hemoglobin
ICU  Intensive care unit
IRQ  Interquartile range
IVS  Interventricular septum
KNN  K-Nearest Neighbor
LAd  Left atrial diameter
LVEF  Left ventricular ejection fraction
LVPW  Left ventricular posterior wall
MI  Myocardial infarction
MIS  Minimally invasive surgery
NYHA  New York Heart Association
PLT  Platelet
POAF  New onset postoperative atrial fibrillation
Pr  Probability
ROC  The receiver operating characteristic curves
SD  Standard deviation
Scr  Serum creatinine

Acknowledgements
Not applicable.

Author contributions
SZ designed the study, collected, and analyzed the data, and wrote the initial 
draft. HC analyzed the data and contributed to data presentation and visuali-
zation. YF made equal contributions to data collection. SJ revised the initial 
draft of the manuscript and provided administrative support. All authors read 
and approved the final manuscript.

Funding
None.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
This retrospective study was conducted following the Declaration of Helsinki 
(revised in 2013) and was approved by the Institutional Review Board of the 
Chinese PLA General Hospital (approval number S2022-360-01). Given the 
observational nature of this study, the requirement for informed consent was 
waived.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 August 2022   Accepted: 31 March 2023

References
 1. Greenberg JW, Lancaster TS, Schuessler RB, et al. Postoperative atrial fibril-

lation following cardiac surgery: a persistent complication. Eur J Cardio-
Thorac surg. 2017;52(4):665–72. https:// doi. org/ 10. 1093/ ejcts/ ezx039.

 2. Eikelboom R, Sanjanwala R, Le ML, et al. Postoperative atrial fibrillation 
after cardiac surgery: a systematic review and meta-analysis. Ann Thorac 
Surg. 2021;111(2):544–54. https:// doi. org/ 10. 1016/j. athor acsur. 2020. 05. 
104.

https://doi.org/10.1093/ejcts/ezx039
https://doi.org/10.1016/j.athoracsur.2020.05.104
https://doi.org/10.1016/j.athoracsur.2020.05.104


Page 10 of 10Zhu et al. Journal of Cardiothoracic Surgery          (2023) 18:139 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 3. LaPar DJ, Speir AM, Crosby IK, et al. Postoperative atrial fibrillation 
significantly increases mortality, hospital readmission, and hospital costs. 
Ann Thorac Surg. 2014;98(2):527–33. https:// doi. org/ 10. 1016/j. athor acsur. 
2014. 03. 039. (discussion 33).

 4. D’Agostino RS, Jacobs JP, Badhwar V, et al. The society of thoracic sur-
geons adult cardiac surgery database: 2018 update on outcomes and 
quality. Ann Thorac Surg. 2018;105(1):15–23. https:// doi. org/ 10. 1016/j. 
athor acsur. 2017. 10. 035.

 5. Bowdish ME, D’Agostino RS, Thourani VH, et al. The society of thoracic 
surgeons adult cardiac surgery database: 2020 update on outcomes 
and research. Ann Thorac Surg. 2020;109(6):1646–55. https:// doi. org/ 10. 
1016/j. athor acsur. 2020. 03. 003.

 6. Rostagno C, La Meir M, Gelsomino S, et al. Atrial fibrillation after cardiac 
surgery: incidence, risk factors, and economic burden. J Cardiothorac 
Vasc Anesth. 2010;24(6):952–8. https:// doi. org/ 10. 1053/j. jvca. 2010. 03. 009.

 7. Gudbjartsson T, Helgadottir S, Sigurdsson MI, et al. New-onset postop-
erative atrial fibrillation after heart surgery. Acta Anaesthesiol Scand. 
2020;64(2):145–55. https:// doi. org/ 10. 1111/ aas. 13507.

 8. Cameron MJ, Tran DTT, Abboud J, et al. Prospective external validation of 
three preoperative risk scores for prediction of new onset atrial fibrillation 
after cardiac surgery. Anesth Analg. 2018;126(1):33–8. https:// doi. org/ 10. 
1213/ ane. 00000 00000 002112.

 9. Mariscalco G, Biancari F, Zanobini M, et al. Bedside tool for predicting 
the risk of postoperative atrial fibrillation after cardiac surgery: the POAF 
score. J Am Heart Assoc. 2014;3(2):e000752. https:// doi. org/ 10. 1161/ jaha. 
113. 000752.

 10. Lip GY, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for 
predicting stroke and thromboembolism in atrial fibrillation using a novel 
risk factor-based approach: the euro heart survey on atrial fibrillation. 
Chest. 2010;137(2):263–72. https:// doi. org/ 10. 1378/ chest. 09- 1584.

 11. Rezaei Y, Peighambari MM, Naghshbandi S, et al. Postoperative atrial 
fibrillation following cardiac surgery: from pathogenesis to potential 
therapies. Am J Cardiovasc Drug. 2020;20(1):19–49. https:// doi. org/ 10. 
1007/ s40256- 019- 00365-1.

 12. Pollock BD, Filardo G, da Graca B, et al. Predicting new-onset post-
coronary artery bypass graft atrial fibrillation with existing risk scores. Ann 
Thorac Surg. 2018;105(1):115–21. https:// doi. org/ 10. 1016/j. athor acsur. 
2017. 06. 075.

 13. Muehlschlegel JD, Burrage PS, Ngai JY, et al. Society of Cardiovascular 
Anesthesiologists/European Association of Cardiothoracic Anaesthetists 
practice advisory for the management of perioperative atrial fibrillation 
in patients undergoing cardiac surgery. Anesth Analg. 2019;128(1):33–42. 
https:// doi. org/ 10. 1213/ ane. 00000 00000 003865.

 14. Rader F, Van Wagoner DR, Ellinor PT, et al. Influence of race on atrial fibril-
lation after cardiac surgery. Circ Arrhythm Electrophysiol. 2011;4(5):644–
52. https:// doi. org/ 10. 1161/ circep. 111. 962670.

 15. Efird JT, Gudimella P, O’Neal WT, et al. Comparison of risk of atrial fibrilla-
tion in black versus white patients after coronary artery bypass grafting. 
Am J Cardiol. 2016;117(7):1095–100. https:// doi. org/ 10. 1016/j. amjca rd. 
2015. 12. 056.

 16. Zhang W, Liu W, Chew ST, et al. A clinical prediction model for post-
cardiac surgery atrial fibrillation in an Asian population. Anesth Analg. 
2016;123(2):283–9. https:// doi. org/ 10. 1213/ ane. 00000 00000 001384.

 17. Bessissow A, Khan J, Devereaux PJ, et al. Postoperative atrial fibrillation in 
non-cardiac and cardiac surgery: an overview. J Thromb Haemost JTH. 
2015;13(Suppl 1):S304–12. https:// doi. org/ 10. 1111/ jth. 12974.

 18. Stefàno PL, Bugetti M, Del Monaco G, et al. Overweight and aging 
increase the risk of atrial fibrillation after cardiac surgery independently 
of left atrial size and left ventricular ejection fraction. J Cardiothorac Surg. 
2020;15(1):316. https:// doi. org/ 10. 1186/ s13019- 020- 01366-x.

 19. Sood A, Toth A, Abdallah M, et al. Temporal trend and associated risk fac-
tors for new-onset atrial fibrillation following cardiac valve surgery. J Atrial 
Fibrillation. 2020;12(6):2129. https:// doi. org/ 10. 4022/ jafib. 2129.

 20. Dobrev D, Aguilar M, Heijman J, et al. Postoperative atrial fibrilla-
tion: mechanisms, manifestations and management. Nat Rev Cardiol. 
2019;16(7):417–36. https:// doi. org/ 10. 1038/ s41569- 019- 0166-5.

 21. Yamashita K, Hu N, Ranjan R, et al. Clinical risk factors for postoperative 
atrial fibrillation among patients after cardiac surgery. Thorac Cardiovasc 
Surg. 2019;67(2):107–16. https:// doi. org/ 10. 1055/s- 0038- 16670 65.

 22. Qureshi M, Ahmed A, Massie V, et al. Determinants of atrial fibrillation 
after cardiac surgery. Rev Cardiovasc Med. 2021;22(2):329–41. https:// doi. 
org/ 10. 31083/j. rcm22 02040.

 23. Helgadottir S, Sigurdsson MI, Ingvarsdottir IL, et al. Atrial fibrillation fol-
lowing cardiac surgery: risk analysis and long-term survival. J Cardio-
thorac Surg. 2012;7:87.

 24. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data 
extraction for systematic reviews of prediction modelling studies: the 
CHARMS checklist. PLoS Med. 2014;11(10):e1001744. https:// doi. org/ 10. 
1371/ journ al. pmed. 10017 44.

 25. Bodenhofer U, Haslinger-Eisterer B, Minichmayer A, et al. Machine 
learning-based risk profile classification of patients undergoing elective 
heart valve surgery. Eur J Cardio-Thorac Surg. 2021;60(6):1378–85. https:// 
doi. org/ 10. 1093/ ejcts/ ezab2 19.

 26. Allyn J, Allou N, Augustin P, et al. A comparison of a machine learning 
model with EuroSCORE II in predicting mortality after elective cardiac sur-
gery: a decision curve analysis. PLoS ONE. 2017;12(1):e0169772. https:// 
doi. org/ 10. 1371/ journ al. pone. 01697 72.

 27. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no per-
formance benefit of machine learning over logistic regression for clinical 
prediction models. J Clin Epidemiol. 2019;110:12–22. https:// doi. org/ 10. 
1016/j. jclin epi. 2019. 02. 004.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.athoracsur.2014.03.039
https://doi.org/10.1016/j.athoracsur.2014.03.039
https://doi.org/10.1016/j.athoracsur.2017.10.035
https://doi.org/10.1016/j.athoracsur.2017.10.035
https://doi.org/10.1016/j.athoracsur.2020.03.003
https://doi.org/10.1016/j.athoracsur.2020.03.003
https://doi.org/10.1053/j.jvca.2010.03.009
https://doi.org/10.1111/aas.13507
https://doi.org/10.1213/ane.0000000000002112
https://doi.org/10.1213/ane.0000000000002112
https://doi.org/10.1161/jaha.113.000752
https://doi.org/10.1161/jaha.113.000752
https://doi.org/10.1378/chest.09-1584
https://doi.org/10.1007/s40256-019-00365-1
https://doi.org/10.1007/s40256-019-00365-1
https://doi.org/10.1016/j.athoracsur.2017.06.075
https://doi.org/10.1016/j.athoracsur.2017.06.075
https://doi.org/10.1213/ane.0000000000003865
https://doi.org/10.1161/circep.111.962670
https://doi.org/10.1016/j.amjcard.2015.12.056
https://doi.org/10.1016/j.amjcard.2015.12.056
https://doi.org/10.1213/ane.0000000000001384
https://doi.org/10.1111/jth.12974
https://doi.org/10.1186/s13019-020-01366-x
https://doi.org/10.4022/jafib.2129
https://doi.org/10.1038/s41569-019-0166-5
https://doi.org/10.1055/s-0038-1667065
https://doi.org/10.31083/j.rcm2202040
https://doi.org/10.31083/j.rcm2202040
https://doi.org/10.1371/journal.pmed.1001744
https://doi.org/10.1371/journal.pmed.1001744
https://doi.org/10.1093/ejcts/ezab219
https://doi.org/10.1093/ejcts/ezab219
https://doi.org/10.1371/journal.pone.0169772
https://doi.org/10.1371/journal.pone.0169772
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1016/j.jclinepi.2019.02.004

	Prediction of new onset postoperative atrial fibrillation using a simple Nomogram
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Study population
	Study endpoint
	Data collection and statistical analysis
	Model development

	Results
	Characteristics of patients
	Derivation and validation subsets
	Model discrimination
	Development and calibration of the nomogram

	Discussion
	Study limitations
	Conclusions
	Acknowledgements
	References


