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Abstract
Background  Asthma is a respiratory disease characterized by airway remodeling. We aimed to find out the role and 
mechanism of lncRNA MEG3 in asthma.

Methods  We established a cellular model of asthma by inducing human airway smooth muscle cells (HASMCs) with 
PDGF-BB, and detected levels of lncRNA MEG3, miR-143-3p and FGF9 in HASMCs through qRT-PCR. The functions 
of lncRNA MEG3 or miR-143-3p on HASMCs were explored by cell transfection. The binding sites of miR-143-3p and 
FGF9 were subsequently analyzed with bioinformatics software, and validated with dual-luciferase reporter assay. 
MTT, 5-Ethynyl-2’-deoxyuridine (EdU) assay, and Transwell were used to detect the effects of lncRNA MEG3 or miR-
143-3p on proliferation and migration of HASMCs. QRT-PCR and western blot assay were used to evaluate the level of 
proliferation-related marker PCNA in HASMCs.

Results  The study found that lncRNA MEG3 negatively correlated with miR-143-3p, and miR-143-3p could directly 
target with FGF9. Silence of lncRNA MEG3 can suppress migration and proliferation of PDGF-BB-induced HASMCs via 
increasing miR-143-3p. Further mechanistic studies revealed that miR-143-3p negatively regulated FGF9 expression in 
HASMCs. MiR-143-3p could inhibit PDGF-BB-induced HASMCs migration and proliferation through downregulating 
FGF9.

Conclusion  LncRNA MEG3 silencing could inhibit the migration and proliferation of HASMCs through regulating 
miR-143-3p/FGF9 signaling axis. These results imply that lncRNA MEG3 plays a protective role against asthma.
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Introduction
Asthma is the chronic respiratory disease affecting 
children and adults, and is characterized by inflamma-
tion of the bronchi, increased viscous secretions within 
the tubes, and airway remodeling [1–3]. Clinically, 
asthma is manifested as cough, wheezing, chest tight-
ness, etc., which can cause lung infection and sudden 
death in severe cases [3]. There is currently no cure for 
asthma, and treatment just could control the symptoms. 
For example, studies have found that anti-inflammatory 
drugs and bronchodilators can be effective in controlling 
asthma [4–6]. However, traditional medications are asso-
ciated with a variety of side effects and exploring new 
treatments is expected to be the key to treating asthma.

Accumulating evidences suggested abnormal migra-
tion and proliferation of HASMCs were responsible for 
changes in ASM thickness and promoting airway remod-
eling [7–9]. In addition, the mechanism of airway remod-
eling is related to the inflammatory-promoting factors 
and growth factors released by inflammatory cells in the 
airway [10, 11]. In the presence of a variety of inflamma-
tory factors, the airway epithelium in asthmatics under-
goes pathological changes, such as basement membrane 
thickening, glandular hypertrophy and hypertrophy of 
smooth muscle [12]. The study found that the expres-
sion of platelet-derived growth factor BB (PDGF-BB) 
was obviously increased on asthmatic tissues [13]. More-
over, PDGF-BB can induce proliferation and migration of 
HASMCs, causing airway remodeling [14, 15]. Therefore, 
inhibiting proliferation and migration of PDGF-BB-stim-
ulated HASMCs can effectively prevent occurrence of 
airway remodeling, which may become an effective treat-
ment for asthma.

Long non-coding RNAs (lncRNAs) are a type of RNAs 
do not encode proteins and have transcripts longer than 
200 nt [16, 17]. LncRNAs have multiple functions, for 
instance acting as molecular scaffolds in the nucleus, reg-
ulating chromosome structure, or as competing endoge-
nous RNAs (ceRNAs) in cytoplasm to promote or inhibit 
mRNA degradation and adsorb microRNAs (miRNAs) 
[18, 19]. In addition, lncRNAs participated in regulation 
of various biophysiological processes, including embry-
onic development, cardiac development, the immune 
system, and the endocrine system [20–22]. Aberrant level 
of lncRNAs has been found in various of diseases, such 
as cardiovascular diseases, tumours and neurodegen-
erative diseases [23–26]. Thus, measuring the expression 
of lncRNAs in different cells or diseases could help to 
understand their function, or to identify valid molecular 
markers. Recent studies have shown thatthe expression 
of lncRNA Maternally-Expressed Gene 3 (MEG3) was 
significantly reduced in the peripheral blood of asthma 
patients [27], and lncRNA MEG3 played important roles 
in asthma by regulating Treg/Th17 balance [28]. The 

results indicate that lncRNA MEG3 is involved in the 
mechanism of asthma, while the specific roles and regu-
latory mechanisms remain to be further investigated.

Increasing evidences demonstrate lncRNAs could act 
as ceRNAs to regulate the role of miRNAs in disease [18, 
29]. MiRNA is a class of non-coding RNAs with a length 
of 21–23 nucleotides, which regulating gene expression at 
the translational level [30, 31]. Research have shown miR-
143-3p is the direct target of lncRNA MEG3, which could 
be involved in periodontitis by sponging miR-143-3p to 
inhibit AKT/IKK signaling pathway [32]. MiR-143-3p is 
a tumor suppressor that affects invasion, migration and 
proliferation [33–35]. MiR-143-3p was found to be obvi-
ously decreased in ASMCs of asthmatic patients and may 
exert a protective effect by inhibiting asthmatic airway 
remodeling [36]. However, it is unclear whether lncRNA 
MEG3 plays an important role in asthma through regu-
lating miR-143-3p.

This study aimed to explore the roles and underlying 
mechanism of lncRNA MEG3 in proliferation and migra-
tion of ASMCs.

Materials and methods
Cell culture and drug treatment
We purchased human airway smooth muscle cells 
(HASMCs) from Shang Hai Ze Ye Biotechnology Co., 
Ltd. (Cat. no. AC339826, Shanghai, China), and cul-
tured with high glucose-DMEM (BasalMedia, Shanghai) 
medium containing 10% fetal bovine serum (FBS, Biolog-
ical Industries). HASMCs were placed in a 37 °C incuba-
tor with 5% CO2.

Previous studies have found PDGF-BB could induce 
airway remodeling in asthma [15]. A cellular model of 
asthma was set up through stimulating HASMCs with 
PDGF-BB (25 ng/ml; Sigma, USA) for 24 h in this study.

Cell transfection
MEG3-siRNA and control-siRNA were synthesized from 
GenePharma, and FGF9 plasmid (sc-403,118-ACT) and 
control plasmid (sc-437,275) were obtained from Santa 
Cruz Biotechnology. The miR-143-3p inhibitor and 
mimic were obtained from ThermoFisher. SiRNAs, plas-
mids, miR-143-3p mimic or inhibitor were transfected 
into HASMCs using Lipofectamine™ 2000 (Invitrogen) 
according to manufacturer’s instruction. Using qRT-PCR 
to test transfection efficiency after 48 h.

RNA extraction and quantitative RT-PCR (qRT-PCR)
We extracted total RNA from HASMCs with RNA-easy 
Isolation Reagent (R701-01, Vazyme), and then cDNA 
was obtained with HiScript II Q RT SuperMix (R222-
01, Vazyme). The qRT-PCR was subsequently performed 
with AceQ qPCR SYBR Green Master Mix (Q111-02, 
Vazyme). Primers were synthesized from Sangon Biotech 
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(Shanghai, China) with following sequences: lncRNA 
MEG3 F: 5’- ​G​C​T​C​T​A​C​T​C​C​G​T​G​G​A​A​G​C​A​C-3’, R: 5’-​C​
A​A​A​C​C​A​G​G​A​A​G​G​A​G​A​C​G​A​G-3’; miR-143-3p F: 5’-​G​
G​G​G​T​G​A​G​A​T​G​A​A​G​C​A​C​T​G-3’, R: 5’-​C​A​G​T​G​C​G​T​G​T​
C​G​T​G​G​A​G​T-3’; PCNA F: 5’-​C​T​A​G​C​C​A​T​G​G​G​C​G​T​G​
A​A​C-3’, R: 5’-​G​A​A​T​A​C​T​A​G​T​G​C​T​A​A​G​G​T​G​T​C​T​G​C​A​
T-3’; FGF9 F: 5’-​G​C​A​G​T​C​A​C​G​G​A​C​T​T​G​G​A​T​C​A​T-3’, R: 
5’-​T​T​C​T​C​G​T​T​C​A​T​G​C​C​G​A​G​G​T​A​G-3’; GAPDH F: 5’-​C​
G​G​A​G​T​C​A​A​C​G​G​A​T​T​T​G​G​T​C​G​T​A​T-3’, R: 5’-​A​G​C​C​T​T​
C​T​C​C​A​T​G​G​T​G​G​T​G​A​A​G​A​C-3’; U6 F: 5’-​C​T​C​G​C​T​T​C​
G​G​C​A​G​C​A​C​A​T​A​T​A​C​T-3’, R: 5’-​A​C​G​C​T​T​C​A​C​G​A​A​T​T​
T​G​C​G​T​G​T​C-3’.

Western blot assay
Total protein was obtained with RIPA lysis buffer 
(P0013B, Beyotime, Shanghai, China). The supernatant 
was collected through centrifugation at 12,000  rpm for 
5  min, and the total protein was detected by a BCA kit 
(P0009, Beyotime, Shanghai, China). 30 µg total proteins 
were subjected to SDS-PAGE, and transferred to PVDF 
membranes (Millipore). Membranes were then blocked 
with 5% skimmed milk for 1  h. Then, primary antibod-
ies including anti-PCNA (ab92552, 1: 3000, Abcam), 
anti-FGF9 (ab206408, 1: 1000, Abcam), and anti-GAPDH 
(ab181602, 1: 10,000, Abcam) were incubated overnight 
at 4  °C. The next day, membranes were washed 5 times 
with TBST buffer for 5 min each time. Membranes were 
then incubated with HRP-labeled secondary antibody 
(AS1107, 1: 10,000, ASPEN). After 2 h, bands were dis-
played with ECL luminescent solution.

MTT assay for cell viability
Proliferation was measured with MTT assay as previ-
ously described [37]. Briefly, seeding 1 × 104 cells into 
a 96-well plate and treated for 24  h before MTT assay. 
Adding 20 µl MTT solution (C0009S, Beyotime, Shang-
hai, China) to each well and cells were cultured for 4 h at 
37 °C. Absorbance levels were measured at 570 nm with a 
plate reading spectrophotometer.

5-Ethynyl-2’-deoxyuridine assay
5-Ethynyl-2’-deoxyuridine (EdU) assay was performed to 
assess cell proliferation. Briefly, HASMCs were seeded in 

96-well plates and then treated with 50 µM EdU solution 
(C10310-1, RIBOBIO) for 2 h. The cells were fixed with 
2% paraformaldehyde for 20 min and stained with Apollo 
staining reaction solution (C10310-1, RIBOBIO) at room 
temperature in dark for 10  min. Finally, cells were ana-
lyzed using a FACSCalibur flow cytometer (Beckman).

Transwell assay for migration
Migration was assessed with Transwell assay as previ-
ously described [38]. Briefly, serum-free and 10% serum-
containing medium were added to the upper and lower 
layers in a 24-well Transwell chamber with a pore size 
of 8 μm. Cells were cultured in the upper layer for 24 h. 
Cells penetrating to the lower layer were subsequently 
fixed with 4% methanol and stained with crystal vio-
let. Cells were counted with an inverted microscope 
(LEICA).

Dual-luciferase reporter gene assay
TargetScan 7.2 database (http://www.targetscan.org/
vert_72/) was used to predict binding sites between miR-
143-3p and FGF9. Subsequently, dual-luciferase reporter 
gene assay was performed as previously described to 
verify the relationship [39] Briefly, mimic control, miR-
143-3p mimic, FGF9-3’UTR-WT and FGF9-3’UTR-
MUT were synthesized from Sangon Biotech (Shanghai, 
China). FGF9-3’UTR-WT or FGF9-3’UTR-MUT were 
cotransfected with miR-143-3p mimics or mimic control 
using Lipofectamine™ 2000 (Invitrogen). After 48 h, lucif-
erase activity was analyzed with dual luciferase reporter 
assay system (Promega).

Statistical analysis
Data were statistically analyzed with GraphPad Prism 9 
and were expressed as mean ± standard deviation (SD). 
Unpaired T-test or one-way ANOVA was used for analy-
sis, and p < 0.05 indicated statistical significance.

Results
LncRNA MEG3 was upregulated, whereas mir-143-3p was 
downregulated in PDGF-BB-induced HASMCs
To explore roles of lncRNA MEG3 and miR-143-3p in 
asthma, this study constructed an asthma model by treat-
ing HASMCs with PDGF-BB, and detected the levels of 
lncRNA MEG3 and miR-143-3p with qRT-PCR. Com-
pared with control group, lncRNA MEG3 was remarkably 
upregulated in PDGF-BB-induced HASMCs, while miR-
143-3p was significantly reduced in PDGF-BB-induced 
HASMCs (Fig. 1A and B). These results suggest lncRNA 
MEG3 and miR-143-3p may be involved in development 
of asthma.

Fig. 1  Expression of lncRNA MEG3 and miR-143-3p in PDGF-BB-induced 
HASMCs. (A-B). The expression of lncRNA MEG3 (A) and miR-143-3p (B) 
were detected by qRT-PCR. **p < 0.01 vs. control group

 

http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/


Page 4 of 10Gu and Zhou Journal of Cardiothoracic Surgery          (2024) 19:314 

LncRNA MEG3 negatively regulates mir-143-3p in HASMCs
Then, we investigated the relationship between lncRNA 
MEG3 and miR-143-3p in asthma by transfecting con-
trol-siRNA, MEG3-siRNA, inhibitor control, miR-
143-3p inhibitor, MEG3-siRNA + inhibitor control, and 
MEG3-siRNA + miR-143-3p inhibitor to HASMCs. Using 
qRT-PCR to examine the transfection efficiency after 
48  h. The results implied MEG3-siRNA could reduce 
the expression of lncRNA MEG3 (Fig.  2A), while miR-
143-3p inhibitor significantly reduced the expression of 
miR-143-3p (Fig.  2B). Furthermore, MEG3-siRNA sig-
nificantly enhanced the level of miR-143-3p in HASMCs 
compared with control-siRNA group, and this effect 
could be significantly reversed by co-transfection with 
miR-143-3p inhibitor (Fig. 2C). These results prove that 
lncRNA MEG3 is negatively correlated with miR-143-3p 
in HASMCs.

LncRNA MEG3-siRNA significantly inhibits proliferation and 
migration of PDGF-BB-induced HASMCs by upregulating 
miR-143-3p
To explore whether miR-143-3p regulates role of lncRNA 
MEG3 in asthma, we performed loss-of-function experi-
ments. First, we transfected control-siRNA or MEG3-
siRNA into HASMCs, and co-transfected inhibitor 
control or miR-143-3p inhibitor and MEG3-siRNA 
into HASMCs. After 48 h, using 25 ng/ml PDGF-BB to 
induce cells for 24  h. In PDGF-BB-induced HASMCs, 
the expression of lncRNA MEG3 was increased, while 
the expression of miR-143-3p was significantly decreased 
(Fig.  3A and B). In addition, MEG3 knockdown signifi-
cantly reduced the level of MEG3 in PDGF-BB-stim-
ulated HASMCs, while miR-143-3p was significantly 
increased (Fig.  3A and B). However, cotransfection of 
miR-143-3p inhibitor with MEG3-siRNA could reverse 
this effect (Fig. 3A and B).

Subsequently, cell proliferation was measured with 
MTT and EdU assay, cell migration was detected with 

Transwell, and expression of cell proliferation related 
gene PCNA was detected by western blot and qRT-PCR. 
The results revealed cell viability of HASMCs induced 
by PDGF-BB was significantly increased (Fig.  3C), the 
protein and mRNA levels of PCNA was significantly 
increased (Fig.  3D-E), the prolifearion of HASMCs was 
signifixantly enhanced (Fig. 3F anf G) and the cell migra-
tion ability was significantly improved (Fig. 3H and I). In 
addition, in PDGF-BB-induced HASMCs, MEG3 down-
regulation significantly reduced cell proliferation and cell 
migration, and PCNA was reduced (Fig. 3C-I). However, 
these changes were significantly reversed via cotransfec-
tion with miR-143-3p inhibitor. These results suggest 
downregulation of lncRNA MEG3 can inhibit prolifera-
tion and migration of PDGF-BB-induced HASMCs by 
upregulating miR-143-3p.

MiR-143-3p directly targets FGF9
To investigate mechanisms of miR-143-3p in prolifera-
tion and migration of PDGF-BB-induced HASMCs, we 
used TargetScan to predict the targets of miR-143-3p. 
The results indicated miR-143-3p had binding sites with 
FGF9 (Fig.  4A). Subsequently, we used dual-luciferase 
reporter gene assay to verify the relationship between 
miR-143-3p and FGF9. FGF9-3’UTR-WT or FGF9-
3’UTR-MUT were co-transfected into HASMCs with 
miR-143-3p mimic or control mimic. As shown in 
Fig.  4B, miR-143-3p mimic could specifically reduce 
luciferase activity of FGF9-3’UTR-WT, but had no effect 
on luciferase activity of MUT. The data suggests FGF9 is 
a direct target of miR-143-3p.

Expression of FGF9 in PDGF-BB-induced HASMCs
Next, we examined the levels of FGF9 in PDGF-BB-stim-
ulated HASMCs with western blot assay and qRT-PCR. 
The results demonstrated that the protein and mRNA 
levels of FGF9 were obviously increased in PDGF-BB-
induced HASMCs compared to control group (Fig.  5A 

Fig. 2  LncRNA MEG3 negatively regulates miR-143-3p in HASMCs. (A-C). The expression of lncRNA MEG3 and miR-143-3p were detected with qRT-PCR. 
**P < 0.01 vs. Control-siRNA; ##P < 0.01 vs. Inhibitor control; &&P < 0.01 vs. MEG3-siRNA + inhibitor control
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and B). These results demonstrate that the expression of 
FGF9 is elevated in PDGF-BB-stimulated HASMCs.

MiR-143-3p negatively regulates FGF9 in HASMCs
To investigate relationship between miR-143-3p and 
FGF9, we transfected mimic control, miR-143-3p mimic, 
control-plasmid or FGF9-plasmid into HASMCs, and 
control-plasmid or FGF9-plasmid was co-transfected 
with miR-143-3p mimic into HASMCs. Results of qRT-
PCR showed miR-143-3p mimic significantly increased 
miR-143-3p (Fig.  6A), and FGF9-plasmid significantly 
increased FGF9 levels (Fig.  6B). Furthermore, upregula-
tion of miR-143-3p could reduce the expression of FGF9 
in HASMCs, which was reversed by co-transfection of 
miR-143-3p mimic with FGF9-plasmid (Fig.  6C and D). 
These results suggest that miR-143-3p can negatively reg-
ulate FGF9 in HASMCs.

MiR-143-3p mimic significantly inhibits proliferation and 
migration of PDGF-BB-induced HASMCs by reducing FGF9
To further elucidate effects of miR-143-3p on prolifera-
tion and migration of PDGF-BB-induced HASMCs, we 
transfected mimic control or miR-143-3p mimic into 

Fig. 4  Determination of the relationship between miR-143-3p and FGF9. 
(A). TargetScan predicted the binding sites between miR-143-3p and 
FGF9; (B). The interaction between miR-143-3p and FGF9 is verified by 
dual-luciferase reporter assay. **p < 0.01 vs. mimic control

 

Fig. 3  Silencing of lncRNA MEG3 inhibits the proliferation and migration of PDGF-BB-induced HASMCs by upregulating miR-143-3p. (A-B). The expres-
sion of lncRNA MEG3 and miR-143-3p were detected by qRT-PCR; (C). MTT assays were used to evaluate the cell proliferation of HASMCs; (D-E). Western 
blotting and qRT-PCR were used to analyze the protein (D) and mRNA (E) levels of PCNA; (F). EdU assay for cell proliferation detection; (G). EdU positive 
rate; (H) and (I). Transwell assays were used to detect the migration of HASMCs. **p < 0.01 vs. Control group; ##p < 0.01 vs. PDGF-BB + control-siRNA group; 
&&p < 0.01 vs. PDGF-BB + MEG3-siRNA + inhibitor control group
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HASMCs, and co-transfected control-plasmid or FGF9-
plasmid with miR-143-3p mimic into HASMCs. After 
48  h, using 25 ng/ml PDGF-BB to treat HASMCs for 
24  h. Consistent with previous results, miR-143-3p was 
decreased in PDGF-BB-stimulated HASMCs, whereas 
FGF9 was significantly increased (Fig.  7A-C). Further-
more, upregulation of miR-143-3p significantly enhanced 

expression of miR-143-3p in PDGF-BB-stimulated 
HASMCs, whereas FGF9 was significantly decreased 
(Fig.  7A-C). However, the downregulation of FGF9 
caused by miR-143-3p mimic was abolished by FGF9-
plasmid (Fig. 7A-C).

MTT results showed PDGF-BB stimulation of 
HASMCs significantly increased cell viability, while 

Fig. 6  MiR-143-3p negatively regulates FGF9 in HASMCs. (A-C). The expression of miR-143-3p and FGF9 were detected by RT-qPCR. (D). The pro-
tein expression of FGF9 were detected by western blot assay. **P < 0.01 vs. Mimic control; ##P < 0.01 vs. Control-plasmid; &&P < 0.01 vs. miR-143-3p 
mimic + control-plasmid

 

Fig. 5  Expression of FGF9 in HASMCs. (A-B). the protein (A) and mRNA (B) levels of FGF9 were detected by Western blotting and qRT-PCR. **p < 0.01 vs. 
Control
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Fig. 7  MiR-143-3p inhibits the proliferation and migration of PDGF-BB-induced HASMCs by downregulating FGF9. (A-C). The expression of miR-143-3p 
and FGF9 were detected by qRT-PCR and western blot assay; (D). MTT assays were used to evaluate the cell proliferation of HASMCs; (E-F). Western blot-
ting and qRT-PCR were used to analyze the protein (E) and mRNA (F) levels of PCNA; (G). EdU assay for cell proliferation detection; (H) EdU positive rate; 
(I) and (J). Transwell assays were used to detect the migration of HASMCs. **p < 0.01 vs. Control group; ##p < 0.01 vs. PDGF-BB + mimic control group; 
&&p < 0.01 vs. miR-143-3p mimic + control-plasmid group
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upregulation of miR-143-3p decreased cell viability 
(Fig.  7D). Western blot and qRT-PCR results indicated 
the expression of PCNA in PDGF-BB group was signifi-
cantly increased, while the upregulation of miR-143-3p 
could reduce the level of PCNA in PDGF-BB-induced 
HASMCs (Fig.  7E-F). The results of EdU assay indi-
cated that PDGF-BB stimulation of HASMCs signifi-
cantly enhanced cell proliferation, while upregulation 
of miR-143-3p decreased cell proliferation (Fig.  7G and 
H). Additionally, as shown in Fig.  7I and J, miR-143-3p 
mimic could significantly reduce cell migration ability of 
PDGF-BB-induced HASMCs. These effects were signifi-
cantly reversed after co-transfection with FGF9-plasmid 
(Fig.  7D-J). These data suggest upregulation of miR-
143-3p can significantly inhibit proliferation and migra-
tion by reducing FGF9.

Discussion
Asthma is a common inflammatory disease of airways 
that usually results in airway remodeling [1, 9, 40]. Air-
way remodeling manifested by bronchial fibrosis, base-
ment membrane thickening and increased airway 
smooth muscle mass [41]. The study found that abnormal 
proliferation and migration of ASMCs were involved in 
development of airway remodeling [7]. Therefore, modu-
lating proliferation and migration of ASMCs may be an 
effective way to explore the therapy of asthma.

Evidences indicated lncRNA was the molecular marker 
for diagnosis of asthma and can be involved in regulat-
ing proliferation and migration of ASMCs [8, 42–44]. For 
example, downregulation of lncRNA MALAT1 inhibited 
proliferation of ASMCs through sponging microRNA-
216a [45]. Recent years, lncRNA MEG3 was discovered 
to be a tumor suppressor gene, which can be involved in 
angiogenesis and tumorigenesis [46, 47]. LncRNA MEG3 
was reported to affect proliferation and migration of 
prostate cancer cells through regulating miR-9-5p/QKI-5 
axis [48]. Furthermore, lncRNA MEG3 could participate 
in neuronal apoptosis in stroke via sponging miR-424-5p 
[49]. Recent research have found lncRNA MEG3 was sig-
nificantly increased in asthmatic patients [27], suggest-
ing lncRNA MEG3 may be involved in the occurrence of 
asthma. The lncRNA MEG3 has been reported to regu-
late Treg/Th17 homeostasis in asthma patients through 
targeting microRNA-17 [28]. However, specific roles and 
regulatory mechanisms of lncRNA MEG3 in asthma is 
still unclear.

Recent studies have identified binding sites between 
lncRNA MEG3 and miR-143-3p, which was involved in 
regulating periodontal ligament cell damage [32]. How-
ever, the relationship between lncRNA MEG3 and miR-
143-3p in asthma has not been reported. Our study 
resolved roles of lncRNA MEG3 and miR-143-3p in 
PDGF-BB-induced HASMCs. We proved lncRNA MEG3 

could negatively regulate miR-143-3p, and silence of 
lncRNA MEG3 could suppress proliferation and migra-
tion of HASMCs via upregulating miR-143-3p. In addi-
tion, bioinformatics database indicated FGF9 was a direct 
target of miR-143-3p, and miR-143-3p was negatively 
correlated with FGF9. FGF9 is the member of the fibro-
blast growth factor family, which is involved in various 
pathological processes such as angiogenesis, apoptosis, 
and tumor growth [50]. FGF9 has been found to be essen-
tial for lung development and recovery from lung tissue 
injury [51]. Furthermore, FGF9 signaling inhibited airway 
smooth muscle differentiation in mouse lungs [52]. These 
studies imply that FGF9 may play important roles in 
smooth muscle cells. Our research showed miR-143-3p 
suppressed proliferation and migration of HASMCs 
through reducing the expression of FGF9, indicating the 
key role of FGF9 in the proliferation and migration of 
HASMCs in asthma. FGF9 may play an important role in 
asthma through regulating the proliferation and migra-
tion of HASMCs.

Our research is the first to elucidate the effects and 
mechanisms of lncRNA MEG3 and miR-143-3p on the 
proliferation and migration of HASMCs in airway remod-
eling in asthma. However, there were also some limita-
tions of this study. Firstly, this study was mainly based 
on in vitro experiments to explore the role of lncRNA 
MEG3 in asthma, while in vivo studies need to be fur-
ther validated by animal models. Besides, the expression 
of lncRNA MEG3/miR-143-3p/FGF9 in asthma patients 
and its correlation with clinical pathological parameters 
also need further clarification. This study also did not 
further explore the effects of FGF9 alone on HASMCs 
and on the protective effect of lncRNA MEG3 on asthma. 
In addition, lncRNA MEG3, as a ceRNA, can sponge a 
variety of miRNAs [53], and the involvement of lncRNA 
MEG3 in HASMCs function through regulation of miR-
143-3p/FGF9 axis is one of the mechanisms identified in 
this study, while other mechanisms need to be explored 
through further studies. In future studies, we will further 
investigate these issues.

Conclusions
In conclusion, our study revealed the roles of lncRNA 
MEG3 in PDGF-BB-induced HASMCs. Downregula-
tion of lncRNA MEG3 could inhibit the proliferation and 
migration of HASMCs by regulating miR-143-3p/FGF9 
signaling axis. These results suggest lncRNA MEG3 plays 
a protective role in asthma and may be a novel biomarker 
for therapy of asthma.
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