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Abstract 

Objective About 10% of patients after cardiopulmonary bypass (CPB) would undergo acute liver injury, which aggra‑
vated the mortality of patients. Ac2‑26 has been demonstrated to ameliorate organic injury by inhibiting inflamma‑
tion. The present study aims to evaluate the effect and mechanism of Ac2‑26 on acute liver injury after CPB.

Methods A total of 32 SD rats were randomized into sham, CPB, Ac, and Ac/AKT1 groups. The rats only received 
anesthesia, and rats in other groups received CPB. The rats in Ac/AKT1 were pre‑injected with the shRNA to inter‑
fere with the expression of AKT1. The rats in CPB were injected with saline, and rats in Ac and Ac/AKT1 groups were 
injected with Ac2‑26. After 12 h of CPB, all the rats were sacrificed and the peripheral blood and liver samples were 
collected to analyze. The inflammatory factors in serum and liver were detected. The liver function was tested, 
and the pathological injury of liver tissue was evaluated.

Results Compared with the sham group, the inflammatory factors, liver function, and pathological injury were 
worsened after CPB. Compared with the CPB group, the Ac2‑26 significantly decreased the pro‑inflammatory fac‑
tors and increased the anti‑inflammatory factor, improved liver function, and ameliorated the pathological injury. All 
the therapeutic effects of Ac2‑26 were notably attenuated by the shRNA of AKT1. The Ac2‑26 increased the GSK3β 
and eNOS, and this promotion was inhibited by the shRNA.

Conclusion The Ac2‑26 significantly treated the liver injury, inhibited inflammation, and improved liver function. The 
effect of Ac2‑26 on liver injury induced by CPB was partly associated with the promotion of AKT1/GSK3β/eNOS.

Key points 

Question: The effect and mechanism of Ac2‑26 on acute liver injury following CPB were unknown.

Findings: The Ac2‑26 significantly ameliorated the liver injury, inhibited the inflammation, and improved liver function.

Meaning: This research furthered our understanding of the therapeutic effect of Ac2‑26 on liver injury induced by CPB 
was positively associated with AKT1.
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Introduction
There is an increasing number of patients undergoing 
cardiac surgery who need the support of cardiopul-
monary bypass (CPB). The incidence of liver failure 
postcardiac surgery is 4%, but about 10% of patients 
who received CPB had been diagnosed with acute 
liver injury [1]. The liver injury in high-risk patients 
could influence the outcome and mortality of patients 
after CPB. Currently, the major pathological mecha-
nism of acute liver injury after CPB includes systemic 
inflammatory response syndrome (SIRS) and oxida-
tive stress [2, 3]. During CPB, exposure of blood to the 
artificial circuits could lead to severe systemic inflam-
mation response and release lots of inflammatory fac-
tors, which damage the endothelium, and the injured 
endothelial will promote the migration and infiltration 
of inflammatory cells into the liver [4]. Moreover, dur-
ing CPB, both the hypotension and activated inflamma-
tion resulted in severe oxidative stress response [2, 5].

Ac2-26 is an active biological peptide of Annexin A1, 
which mainly introduced the anti-inflammatory effect 
of glucocorticoids. Ac2-26 can inhibit the activation 
of T cells with expression of CD25 and CD69 [6], and 
regulate the balance of Th1 and Th2 with inhibition of 
T-cell receptors [7, 8]. Ac2-26 also reduces the migra-
tion and infiltration of neutrophils and monocytes by 
formyl peptide receptors [9, 10]. We also found that 
Ac2-26 reduced lung and brain reperfusion injury 
[11, 12]. Therefore, we hypothesized that Ac2-26 can 
ameliorate liver injury after CPB. In this study, we per-
formed a CPB model in rats and injected the Ac2-26 to 
observe the effect of Ac2-26 on liver injury after CPB. 
Moreover, considering the key role of AKT1 in inflam-
mation and cell survival, we administrated the AKT1 
interference RNA to investigate the mechanism of 
Ac2-26 in liver injury.

Material and methods
This study was approved by the ethics committee of Har-
bin Medical University. All the rats and procedures were 
based on “The Principles of Laboratory Animal Care” and 
“The Guide for the Care and Use of Laboratory Animals” 
formulated by Harbin Medical University.

shRNA construction
According to the sequences of AKT1 (Gen bank acces-
sion number NM 033230), the shRNA for AKT1 was 
designed and constructed by Invitrogen. In my prelimi-
nary study, we found that 1 ×  105 ifu/L AKT1 expres-
sion lentiviral solution at 15 μL/kg body weight [13] 

injected for 72  h significantly reduced the AKT1 pro-
tein expression. The effect of shRNA on AKT1, AKT2, 
and AKT3 was detected using RT-PCR.

Animal study
Thirty-two male SD rats were randomized into sham, 
CPB, Ac, and Ac/AKT1 groups. The rats in the Ac/
AKT1 group were injected with the shRNA to interfere 
with the expression of AKT1 preoperative 72 h accord-
ing to the results of our preliminary study. After 72 h of 
injection of shRNA, these 8 rats received CPB.

The rats in the sham group only received anesthesia 
and cannulation. The rats in CPB, Ac, and Ac/AKT1 
groups received the standard CPB for 60 min [14]. The 
rats in the CPB group received intravenous injections of 
saline, and rats in the Ac and Ac/AKT1 groups received 
intravenous injections of Ac2-26. All the rats were intu-
bated with a 16-gauge cannula for mechanical ventila-
tion. The respiratory parameters were set as Vt 8 ml/kg, 
respiratory rate 50/min, and fraction inspiratory oxygen 
50%. The anesthesia was maintained with 2% isoflurane 
throughout the experiment. The CPB procedure was 
referred from Hirao’s study [15]. Briefly, the right femo-
ral artery was cannulated to monitor the hemodynamic 
change and analyze the artery blood gas (Bayer 368, 
Germany). After hepatizing with 500 IU/kg heparin, the 
left femoral artery, and right internal jugular vein were 
cannulated to construct the CPB circuit. Moreover, the 
CPB circuit also contained a venous reservoir, roller 
pump, and membrane oxygenator. The CPB circuit was 
primed with 11  ml hydroxyethyl starch solution, which 
contained 0.2 mL heparin and 0.5 ml 7% sodium bicar-
bonate solution. During CPB, the flow rate CPB was 
gradually increased to 100  ml/kg/min and maintained 
for 60  min [14] under normothermic conditions. The 
CPB was administrated for 60 min. After CPB, the rats in 
sham and CPB groups were injected with saline (0.5 ml), 
and rats in Ac and Ac/AKT1 groups were injected with 
Ac2-26 (1 mg/kg) [11]. During CPB, the mechanical ven-
tilation was withdrawn and the isoflurane was delivered 
using Drager Vapor, which connected within the inspira-
tory gas-membrane oxygenator circuit. The arterial 
blood pressure was maintained between 50-60  mmHg 
with epinephrine continuous infusion.

After 60 min of CPB, the mechanical ventilation was 
returned and the CPB was withdrawn. The protamine 
(0.1  mg per 100  IU heparin) was injected to anti-hep-
arinize and the 2000 U/kg penicillin was injected to 
anti-infect. After saturation of incisions, the rats were 
extubated when they recovered spontaneous breath. All 
the rats were sacrificed after 12 h of CPB.
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Liver function estimation
After 12 h, all the rats were sacrificed with overdosage 
of anesthetic. Peripheral blood was collected before 
CPB, and 12 h after CPB. The peripheral blood was cen-
trifuged at 5000 g for 10 min and the serum was stored 
at -70 °C. The serum was used to analyze the concentra-
tion of aspartate aminotransferase (AST), alanine ami-
notransferase (ALT), and lactate dehydrogenase (LDH).

Inflammation
The TNF-α, IL-1β, IL-10, and elastase in liver tissue and 
serum were detected before CPB, and 12  h after CPB 
with Elisa Kits (Boster, Wuhan, China).

Oxidative stress response
Part of liver tissue was homogenized to test the pro-
tein concentration and oxidative stress response. The 
concentration and activity of Xanthine oxidase (XO), 
myeloperoxidase (MPO), Superoxide dismutase (SOD), 
synthesis of glutathione (GSH) and malondialdehyde 
(MDA) in liver tissue were detected.

Liver injury
Liver tissue preserved in 10% formalin was embedded in 
paraffin and cut into 4 μm section. Liver sections were 
stained with hematoxylin and eosin and examined using 
a light microscope. The histological injury was evalu-
ated by two blinded to this study. The liver histological 
was scared by analyzing the infiltration of inflammatory 
cells, hepatocyte necrosis, ballooning degeneration, and 
hyaline degeneration as follows [16]: Score 0, no vis-
ible cell damage. Score 1, focal hepatocyte damage on 
less than 25% of the tissue, seldom neutrophil infiltra-
tion. Score 2, focal hepatocyte damage on 25-50% of the 
tissue, and moderate neutrophil infiltration. Score 3, 
extensive, but focal, hepatocyte lesions and infiltration 
of neutrophils. Score 4, global hepatocyte necrosis.

The part liver was weighed and dried at 80℃ for 24 h 
and the wet/dry weight ratio.

Detection of apoptosis
The apoptosis of liver tissue was analyzed by the terminal 
deoxynucleotidyl transferase-mediated dUTP-biotin nick-
end labeling (TUNEL) kit (Roche, Shanghai, China). Briefly, 
the liver sections were deparaffinized and rehydrated in 
graded alcohol. The protein in section was digested with 
proteinase K and incubated in terminal deoxyribonucleoti-
dyl transferase enzyme at 37 °C for 2 h, and then immersed 
in antidigoxigenin peroxidase for 30 min at room tempera-
ture. After washing 3 times with PBS, the sections were 
stained with diaminobenzidine–hydrogen peroxidase and 
Mayer’s hematoxylin. The nuclei with brown were apoptosis. 

The pathologist examined ten random fields of each section 
and counted the apoptotic cells. The apoptosis index was 
calculated by the ratio of positive cells to total cells.

Western blot analysis
Part of liver tissue stored in liquid nitrogen was homog-
enized and the protein was extracted. The protein con-
centration was tested by the Bradford assay. Equivalent 
protein was injected into the gel and then electrotrans-
ferred to the PVDF membrane. The PVDF membranes 
were incubated with the GSK3β, eNOS, Bax, Bcl-2, 
cleaved-caspase-3, and NF-κB antibodies (all from Santa 
Cruz Biotechnology, Inc. Santa Cruz, USA). Twenty-four 
hours after incubation, the membrane was further incu-
bated with a second antibody to react with horseradish 
peroxidase, and then visualized with chemiluminescence.

Statistical analysis
All the data was analyzed using the GraphPad Pris 8.0 
and the normality data was presented as mean (SD). 
The difference of all the data was analyzed by one-way 
analysis of variance, and the difference between the two 
groups was corrected with the Bonferroni. A p-value 
of < 0.05 was considered statistically significant.

Results
The effect of shRNA on the expression of AKT1
The shRNA only decreased the RNA expression of AKT1, 
but did not influence the expression of AKT2 and AKT3 
(Fig. 1A). To manifest the efficacy of shRNA, we injected 
the shRNA into normal rats to observe the inhibited 
effect of shRNA on AKT1 in liver tissue. The expression 
of AKT1 in the liver was notably reduced by shRNA, 
especially for 72 h (Fig. 1B).

Ac2‑26 improved liver function
After CPB, the AST, ALT, and LDH were significantly 
increased compared with the sham group (P < 0.05). 
Compared with the CPB group, the AST, ALT, and LDH 
were decreased by the Ac2-26. The protection of Ac2-26 
on liver function was partly reversed by the AKT1 inter-
ference (Fig. 1C).

Ac2‑26 attenuated the systemic and local inflammation
The concentrations of TNF-α, IL-1β, IL-10, and neutro-
phils elastase were increased in rats who received CPB. 
After 12 h of CPB, the Ac2-26 significantly reduced the 
TNF-α and neutrophils elastase, but increased the IL-10 
concentrations in serum (P < 0.05). Moreover, we also 
found that the expression of NF-κB was reduced by Ac2-
26, but the reduction of NF-κB by Ac2-26 was lessened 
by AKT1 interference RNA (Fig. 2).



Page 4 of 9Xing et al. Journal of Cardiothoracic Surgery          (2024) 19:312 

Fig. 1 Effect of shRNA on AKT1 and Ac2‑26 on liver function after CPB. The rats were injected with the shRNA to inhibit the expression of AKT1. The 
rats were sacrificed at 24, 48, 72, and 96 h after injection of shRNA. The livers were collected to detect the expression of AKT1 using Western blot. 
The results suggested that the peak effect of shRNA was at 72 h after injection (A). (a, P < 0.05, compared with 24 h timepoint; b, P < 0.05, compared 
with 48 h timepoint; c, P < 0.05, compared with 72 h timepoint) ( , 24 h timepoint; , 48 h timepoint , 72 h timepoint; 

, 96 h timepoint). After 12 h of CPB, the ALT, AST, and LDH were significantly increased. Compared with the CPB group, the Ac2‑26 notably 
decreased the ALT, AST, and LDH. Compared with the Ac group, the AKT reference RNA partly attenuated the protection of Ac2‑26 on liver function. 
Mean levels of hepatic enzymes in four groups were significantly different. (a, P < 0.05, compared with the sham group; b, P < 0.05, compared 
with the CPB group; c, P < 0.05, compared with the Ac group) ( , Sham group; , CPB group; , Ac group; , Ac/
AKT1 group)

Fig. 2 Effect of Ac2‑26 on local and systemic inflammation after CPB. After CPB, the concentrations of TNF‑α, IL‑1β, IL‑10, and elastase were 
significantly up‑regulated. Compared with the CPB group, the Ac2‑26 significantly downregulated the TNF‑α, IL‑1β, and elastase, but increased 
the IL‑10 in liver tissue and serum. However, the regulation of Ac2‑26 on cytokines was partly reversed by the AKT interference RNA (A). Moreover, 
we also detected the expression of NF‑κB in liver tissue after CPB. The expression of NF‑κB was increased by CPB, but decreased by Ac2‑26. The AKT1 
interference RNA notably attenuated the effect of Ac2‑26 (B). (a, P < 0.05, compared with the sham group; b, P < 0.05, compared with the CPB group; 
c, P < 0.05, compared with the Ac group) ( , Sham group; , CPB group; , Ac group; , Ac/AKT1 group)



Page 5 of 9Xing et al. Journal of Cardiothoracic Surgery          (2024) 19:312  

Ac2‑26 inhibited the oxidative stress response
After CPB, the activity of XO, SOD, MPO, GSH, and 
concentration of MDA were significantly up-regulated, 
compared to the baseline and sham group (P < 0.05). 
Compared with the CPB group, the Ac2-26 significantly 
reduced the activity of XO, MPO, and MDA levels, but 
increased the activity of GSH and SOD levels. The regu-
lation of Ac2-26 on oxidative stress response was partly 
lessened by the shRNA (P < 0.05) (Fig. 3).

Ac2‑26 ameliorated the liver injury
There was no histological damage in the sham group. 
After activation of CPB, obviously histological dam-
age was observed, including hepatic lobular necrosis, 

hyperemia in liver tissue, vacuolar degeneration of 
hepatocytes, neutrophil infiltration, derangement, and 
necrosis of the hepatocyte cord. Compared with the CPB 
group, the histological injury was attenuated by the Ac2-
26. The score of liver injury was significantly lower in the 
Ac group compared to the CPB group. However, the pro-
tection of Ac2-26 on liver injury was partly inhibited by 
the AKT1 interference RNA (Fig. 4).

Ac2‑26 reduced the apoptosis
There were seldom apoptotic cells found in the sham 
group. Compared with the sham group, a lot of apop-
totic hepatocytes were observed in rats induced by 
CPB (P < 0.05). Hepatocyte apoptosis induced by CPB 

Fig. 3 Effect of Ac2‑26 on oxidative stress response in the liver after CPB. The activity of XO, MPO, SOD, and levels of GSH and MDA in the liver were 
tested. The activity of XO, MPO, and MDA levels were significantly increased, but the SOD and GSH were decreased. These results suggested CPB 
stimulated serious oxidative stress response. The Ac2‑26 down‑regulated XO, MPO, and MDA, but up‑regulated the SOD and GSH, and this effect 
of Ac2‑26 was significantly reduced by the AKT1 interference RNA. (a, P < 0.05, compared with the sham group; b, P < 0.05, compared with the CPB 
group; c, P < 0.05, compared with the Ac group) ( , Sham group; , CPB group; , Ac group; , Ac/AKT1 group)

Fig. 4 Effect of Ac2‑26 on liver histological injury after CPB. The image of the sham group showed normal histological liver tissue. Compared 
with the sham group, the CPB led to severe liver injury, including prominently swollen, neutrophil infiltrations, and even hemorrhage. Compared 
with the CPB group, the Ac2‑26 notably improved liver injury, but the improvement was partly lessened by the AKT1 interference RNA (X200). (a, 
P < 0.05, compared with sham group; b, P < 0.05, compared with CPB group; c, P < 0.05, compared with Ac group) ( , Sham group; 
, CPB group; , Ac group; , Ac/AKT1 group)
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was significantly inhibited by the Ac2-6. However, 
compared to the Ac group, the reduction of Ac2-26 on 
apoptosis was partially inhibited by AKT1 interference 
RNA (P < 0.05) (Fig. 5).

The apoptotic-regulated protein in liver tissue was 
detected. The Ac2-26 significantly reduced the expres-
sion of Bax and cleaved caspase-3, but increased the 
expression of Bcl-2. The modulation of Ac2-26 on apop-
totic proteins was reduced by the knock-down of AKT1 
(P < 0.05).

We also analyzed the eNOS and GSK3β in liver tissue. 
After CPB, the eNOS and GSK3β were slightly increased, 
but significantly up-regulated by the Ac2-26, but down-
regulated by the shRNA (P < 0.05) (Fig. 6).

Discussion
In this study, we found that Ac2-26 significantly 
improved liver function after CPB via anti-inflammation 
and anti-oxidative properties. The protection of Ac2-26 is 
mainly associated with AKT1.

Fig. 5 Effect of Ac2‑26 on liver apoptosis after CPB. Apoptosis of the liver was estimated by TUNEL staining. CPB results in lots of liver cell apoptosis. 
Compared with the CPB group, the apoptosis was alleviated by Ac2‑26, but this effect was reversed by AKT1 interference RNA. (a, P < 0.05, 
compared with the sham group; b, P < 0.05, compared with the CPB group; c, P < 0.05, compared with the Ac group) ( , Sham group; 

, CPB group; , Ac group; , Ac/AKT1 group)

Fig. 6 Effect of Ac2‑26 on apoptotic protein after CPB. The pro‑apoptotic protein Bax and cleaved caspase‑3 were down‑regulated, 
but the anti‑apoptotic protein Bcl‑2 was up‑regulated by the Ac2‑26. The regulation of Ac2‑26 on apoptotic protein was attenuated by the AKT1 
interference RNA. (a, P < 0.05, compared with the sham group; b, P < 0.05, compared with the CPB group; c, P < 0.05, compared with the Ac group) 
( , Sham group; , CPB group; , Ac group; , Ac/AKT1 group)
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The CPB is essential for the patients who undergo the 
cardiac surgery. However, exposure of blood to the cir-
cuit and liver ischemia/reperfusion will lead to severe 
SIRS and oxidative stress response. The inflammatory 
factors and reactive oxygen species (ROS) result in liver 
injury, which can influence the outcome of patients with 
cardiac disease [17]. We found that Ac2-26 significantly 
ameliorates lung injury after lung transplantation and 
CPB [11, 18]. Considering the crucial role of inflamma-
tion and oxidative stress response in liver injury after 
CPB, we speculated that Ac2-26 can reduce liver injury 
after CPB. Previous studies indicated that the liver injury 
peaked at 3 h after CPB and gradually decreased, but still 
nearly 5 times than baseline [2]. Firstly, we evaluated the 
effect of Ac2-26 on liver function and liver injury. In the 
rats that received CPB, the ALT, AST, and LDH were 
significantly increased, which agrees with previous stud-
ies [2]. The increase of ALT, AST, and LDH indicated 
severe hepatic dysfunction and hepatocyte injury after 
CPB. The higher liver enzymes in this study were differ-
ent from clinical work. The major reason may be that the 
rats in this study did not receive additional medical drugs 
and treatments to inhibit the local and systemic inflam-
mation. Moreover, the blood pressure in this study was 
maintained within 50-60 mmHg, this lower blood pres-
sure might result in low perfusion in the liver and fur-
ther lead to liver ischemia/reperfusion injury. Compared 
with the CPB group, the ALT, AST, and LDH were sig-
nificantly reduced by the Ac2-26. These results suggested 
that Ac2-26 improved the liver function. Moreover, the 
liver histological injury and apoptosis also indicated that 
Ac2-26 reduced the liver injury induced by CPB.

During CPB, the inflammatory cells such as neutro-
phils and macrophages were activated and recruited 
into the organ which caused the injury. After infiltration, 
these inflammatory cells will produce various cytokines 
and lead to organ injury. In this study, the results of his-
tological and cytokines in the liver and serum indicated 
that there were lots of neutrophils and macrophages 
infiltrated in liver tissue. Moreover, the activated inflam-
matory cells also secreted the cytokines and aggravated 
the SIRS. As we know, the TNF-α and IL-1β had sig-
nificantly increased after CPB and were considered to 
be the indication of SIRS. The TNF-α and IL-1β played 
a pivotal role in liver injury in different liver injury 
models [2, 19, 20]. The TNF-α not only directly injured 
the hepatocyte [21, 22], but also triggered the extrin-
sic apoptosis. The IL-1β also contributed the inflam-
mation and induced liver injury [23, 24]. The elastase 
could damage the basement membrane of hepatocytes, 
and extracellular matrix components and inhibit the 
endothelial production of prostacyclin [25], and elastase 
inhibitors can ameliorate liver injury [26]. In this study, 

the Ac2-26 significantly reduced TNF-α, IL-1β, and neu-
trophils elastase. In addition, the Ac2-26 reduced the 
inflammation after CPB also associated with an increase 
of the anti-inflammatory factor IL-10. As an important 
anti-inflammatory factor, IL-10 can inhibit the synthesis 
of proinflammatory cytokines, including TNF-α, IL-1β, 
and IL-6 [27]. As an endogenous glucocorticoid-regu-
lated anti-inflammatory [28], Ac2-26 has been indicated 
to prompt the expression of IL-10 to regulate inflamma-
tion [29, 30]. These results suggested that Ac2-26 ame-
liorated liver injury and protected liver function may be 
associated with anti-inflammation.

In addition to inflammation, the oxidative stress 
response also plays a key role in liver injury. During 
CPB, the blood flow of the liver is significantly reduced 
and the hepatocyte will cause ischemia and reperfusion 
injury [2, 31]. After CPB, the activity of XO and MPO 
increased and contributed to the production of ROS. 
The XO generated various ROS and these ROS take 
part in various liver injury [32, 33]. The activity of MPO 
not only is a marker of neutrophils, but also plays an 
important role in the production of ROS [34]. In addi-
tion, as the final product of oxidative stress response, 
the MDA is usually the indication of the oxidative stress 
response [35]. In contrast, SOD and GSH are known as 
the main anti-oxidase factors [18]. In this study, all the 
indicators were significantly increased after CPB. These 
results suggested that CPB induced a severe oxidative 
stress response. Also, we found that Ac2-26 significantly 
decreased the activity of XO and MPO, and reduced 
the levels of MDA in liver tissue. In contrast, the Ac2-
26 increased the activity of SOD and GSH after CPB. 
Therefore, we concluded that Ac2-26 can inhibit the 
oxidative stress response. These results were consistent 
with previous studies [9, 11].

Moreover, in this study, we also investigated the effect 
of Ac2-26 on the apoptosis of liver cells after CPB. As we 
know both the ROS and inflammatory cytokines result 
in apoptosis, and the apoptotic cells will influence the 
liver function and outcome of patients [36, 37]. In this 
study, we found the apoptotic liver cells were significantly 
increased after CPB, and the apoptosis was significantly 
lessened by the Ac2-26. The anti-apoptotic effect of Ac2-
26 may be associated with the inhibition of Ac2-26 on 
oxidative and local inflammation induced by CPB.

In our previous study, we found the protection of 
Ac2-26 on lung injury mainly depended on the promo-
tion of eNOS [11], and the production of eNOS mainly 
depended on the AKT1 [38]. Moreover, the GSK3β, 
which is important down-stream of AKT1, exerts sur-
vival, proliferation, and growth effect [39, 40], and acti-
vation of AKT/GSK3β/eNOS pathway has been indicated 
to present the anti-inflammation and apoptosis effect 
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[41–43]. Therefore, to investigate the mechanism of Ac2-
26 on liver injury after CPB, we used the rat knockdown 
AKT1 by shRNA to perform the CPB model, and injected 
the Ac2-26. In this study, all the protection of Ac2-26 
was reversed in rats that received shRNA. These results 
indicated that the protection of Ac2-26 on liver injury 
after CPB mainly depended on the AKT1/GSK3β/eNOS 
pathway.

Limitation
There were some limitations in this study. First, we did 
not observe the long-term effect of Ac2-26 on liver injury 
after CPB, because other articles and my preliminary trial 
suggested the inflammation peaked at 8-12  h after CPB 
and the liver function slowly recovered as time went on. 
Second, we only investigated the effect of AKT1 on the 
protection of Ac2-26, but not the deep protein pathway. 
This should be further investigated. Third, we did not 
deeply examine the effect of Ac2-26 on inflammatory 
cells. In our future study, we will culture and activate the 
inflammatory cells and survey the possible mechanism of 
Ac2-26 on inflammatory cells.

Conclusion
According to the results, we concluded that Ac2-26 
protected the acute liver injury, and improved the liver 
function via inhibition of inflammation, oxidative stress 
response, and apoptosis. The protection of Ac2-26 mainly 
depended on the promotion of AKT1 protein.
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