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Abstract 

Background Long QT Syndrome (LQTS) and Beckwith‑Wiedemann Syndrome (BWS) are complex disorders 
with unclear origins, underscoring the need for in‑depth molecular investigations into their mechanisms. The main 
aim of this study is to identify the shared key genes between LQTS and BWS, shedding light on potential common 
molecular pathways underlying these syndromes.

Methods The LQTS and BWS datasets are available for download from the GEO database. Differential expression 
genes (DEGs) were identified. Weighted gene co‑expression network analysis (WGCNA) was used to detect significant 
modules and central genes. Gene enrichment analysis was performed. CIBERSORT was used for immune cell infiltra‑
tion analysis. The predictive protein interaction (PPI) network of core genes was constructed using STRING, and miR‑
NAs regulating central genes were screened using TargetScan.

Results Five hundred DEGs associated with Long QT Syndrome and Beckwith‑Wiedemann Syndrome were identi‑
fied. GSEA analysis revealed enrichment in pathways such as T cell receptor signaling, MAPK signaling, and adrenergic 
signaling in cardiac myocytes. Immune cell infiltration indicated higher levels of memory B cells and naive CD4 T cells. 
Four core genes (CD8A, ICOS, CTLA4, LCK) were identified, with CD8A and ICOS showing low expression in the syn‑
dromes and high expression in normal samples, suggesting potential inverse regulatory roles.

Conclusion The expression of CD8A and ICOS is low in long QT syndrome and Beckwith‑Wiedemann syndrome, 
indicating their potential as key genes in the pathogenesis of these syndromes. The identification of shared key genes 
between LQTS and BWS provides insights into common molecular mechanisms underlying these disorders, poten‑
tially facilitating the development of targeted therapeutic strategies.
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Introduction
Long QT syndrome (LQTS) is an electrocardiac disorder 
characterized by the prolongation of the QT interval on 
electrocardiograms. It is prone to causing severe cardiac 
arrhythmias such as torsades de pointes and ventricular 
fibrillation, which may result in syncope, sudden death, 
and other critical conditions. LQTS is also a relatively 
uncommon hereditary cardiac ailment, with its precise 
prevalence varying among different regions and ethnic 
groups. Familial studies have shed light on the genetic 
underpinnings of LQTS, revealing mutations in ion 
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channel genes as key contributors to its pathogenesis [1]. 
Following the onset of this disorder, symptoms such as 
fainting, palpitations, and post-syncope convulsions are 
likely to occur. These symptoms can be triggered by fac-
tors such as exercise, emotional stress, or the use of stim-
ulant medications [2].

The pathophysiological mechanism of LQTS involves 
anomalous cardiac currents that lead to delayed myocar-
dial cell repolarization. This electrophysiological abnor-
mality is often precipitated by mutations in ion channels, 
causing aberrant ion fluxes [3]. Patients with LQTS are 
prone to experiencing severe cardiac arrhythmias trig-
gered by provocative factors such as intense physical 
activity, emotional arousal, or medication use. These cir-
cumstances may lead to syncope, sudden cardiac arrest, 
and sudden death [4].

Beckwith-Wiedemann Syndrome (BWS) is an uncom-
mon genetic condition marked by a range of mani-
festations, such as excessive growth, anomalies in the 
abdominal wall, and an elevated susceptibility to specific 
childhood tumors [5, 6]. Additionally, individuals with 
BWS have an elevated risk of developing tumors during 
childhood, particularly Wilms tumor in the kidneys and 
hepatoblastoma in the liver [7]. This syndrome is associ-
ated with genetic alterations affecting imprinted genes 
on chromosome 11, which regulate growth and develop-
ment [8]. BWS is typically diagnosed based on clinical 
features, physical examinations, and genetic testing [9].

Furthermore, recent research has highlighted the intri-
cate interplay between ion channels and growth-related 
pathways in cellular physiology. For instance, ion chan-
nels play crucial roles not only in cardiac electrophysi-
ology but also in cellular proliferation, migration, and 
differentiation [10]. Conversely, dysregulation of growth-
related pathways can influence ion channel expression 
and function, thereby impacting cardiac excitability and 
arrhythmia susceptibility [11]. These findings under-
score the potential convergence of molecular pathways 
implicated in LQTS and BWS pathogenesis. Common 
themes such as genetic factors, chromosomal anomalies, 
and gene dysregulation may underlie the clinical hetero-
geneity observed in these syndromes. However, further 
research is warranted to elucidate the precise molecu-
lar mechanisms linking LQTS and BWS and to explore 
potential therapeutic targets shared between these 
conditions.

Bioinformatics is an interdisciplinary field that com-
bines computer science with biology, playing a piv-
otal role in biological research. Significant progress has 
also been made in protein mass spectrometry analysis, 
structure prediction, and functional annotation, aiding 
researchers in understanding protein structure and func-
tion [12]. With the ongoing technological developments, 

the role of bioinformatics in fields such as biology, medi-
cine, and drug development will continue to expand [13].

Recent studies have utilized bioinformatics to explore 
CD8A as an immune cell infiltration and effective diag-
nostic biomarker in rheumatoid arthritis [14]. Li [15] 
analyzed ICOS + Tregs as a functional subset of Tregs 
in immune diseases. Furthermore, recent investigations 
have begun to explore Long QT Syndrome and Beckwith-
Wiedemann Syndrome using bioinformatics techniques 
[16], including artificial intelligence. Variations in genes 
and molecular mechanisms exist across different dis-
eases, and the relationship between CD8A, ICOS, Long 
QT Syndrome, and Beckwith-Wiedemann Syndrome 
remains elusive.

This study seeks to utilize bioinformatics methods to 
identify key genes shared among Long QT Syndrome, 
Beckwith-Wiedemann Syndrome, and normal sam-
ples. The research will involve conducting enrichment 
and pathway analyses. Publicly available datasets will 
be employed to validate the significant involvement of 
CD8A and ICOS in both Long QT Syndrome and Beck-
with-Wiedemann Syndrome.

Methods
Long QT Syndrome and Beckwith‑Wiedemann Syndrome 
datasets
In this study, we accessed the GEO database (http:// www. 
ncbi. nlm. nih. gov/ geo/) using the search terms ’Long 
QT Syndrome’ and ’Beckwith-Wiedemann Syndrome’ 
to retrieve datasets GSE121578 and GSE95486, respec-
tively. These datasets correspond to Long QT Syndrome 
and Beckwith-Wiedemann Syndrome, respectively. The 
datasets were generated using platforms GPL16791 and 
GPL13534. GSE121578 includes one sample each for 
Long QT Syndrome, Beckwith-Wiedemann Syndrome, 
and normal blood, while GSE95486 comprises three sam-
ples for Beckwith-Wiedemann Syndrome and 21 normal 
blood samples. These datasets were employed for the 
identification of differentially expressed genes (DEGs) 
associated with Long QT Syndrome and Beckwith-
Wiedemann Syndrome (Table 1).

Batch correction
To integrate and correct batch effects in multiple data-
sets, we initially utilized the R package "inSilicoMerging" 
[DOD: https:// doi. org/ 10. 1186/ 1471- 2105- 13- 335] to 
merge GSE121578 and GSE95486, creating a consolidated 
matrix. Following this, the "removeBatchEffect" function 
from the R package "limma" (version 3.42.2) was applied to 
mitigate batch variations, resulting in a batch-effect-cor-
rected matrix for subsequent analysis.

For probe summarization and background correction 
of the merged matrix from GSE121578 and GSE95486, 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1186/1471-2105-13-335


Page 3 of 15Meng et al. Journal of Cardiothoracic Surgery          (2024) 19:321  

the R package "limma" was employed. The Benjamini–
Hochberg method was then used to adjust the initial 
p-values, and fold change (FC) was computed based on 
false discovery rate (FDR). Differential expressed genes 
(DEGs) were identified using a significance cutoff of 
p < 0.05 and FC > 1.5. Visualization of DEGs was facili-
tated through the creation of a volcano plot.

Weighted Gene Co‑expression Network Analysis (WGCNA)
Initially, we started with the merged and batch-cor-
rected gene expression matrices from GSE121578 and 
GSE95486. For each gene, the Median Absolute Devia-
tion (MAD) was calculated, and the lower 50% of genes 
with the smallest MAD were excluded. The R package 
WGCNA’s "goodSamplesGenes" function was then uti-
lized to eliminate outlier genes and samples.

Subsequently, the Weighted Gene Co-expression Net-
work Analysis (WGCNA) method was applied to con-
struct a scale-free co-expression network. This involved 
calculating a Pearson correlation matrix and average link-
age for all gene pairs. A weighted adjacency matrix was 
built using a power function (A_mn =|C_mn|^β), where 
β, a soft threshold parameter, was set to 10. The adja-
cency matrix was transformed into a Topological Overlap 
Matrix (TOM), which measures gene connectivity in the 
network. Dissimilarity (1-TOM) was computed based on 
network gene ratios.

To categorize genes into modules with similar expres-
sion profiles, average linkage hierarchical clustering was 
performed using TOM-based dissimilarity measures. 
The gene dendrogram’s minimum module size was set 
to 30, with a sensitivity of 3. For further module analysis, 
dissimilarity of module characteristic genes was calcu-
lated, and a cutting line in the module dendrogram was 
selected to merge some modules. Modules with distances 
less than 0.25 were also merged. The grey module repre-
sents a gene set that cannot be assigned to any specific 
module.

Functional enrichment analysis
In our investigation, we leveraged computational meth-
ods such as Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) analyses to evaluate 
gene functions and biological pathways. The differentially 

expressed gene lists obtained from Venn diagrams were 
fed into the KEGG REST API (https:// www. kegg. jp/ kegg/ 
rest/ kegga pi. html) to access updated KEGG Pathway 
gene annotations. These annotations served as the back-
ground for gene mapping through the R package "cluster 
Profiler" (version 3.14.3), facilitating enrichment analysis 
and providing outcomes for gene set enrichment.

For GO annotations, gene information was extracted 
from the R package "org.Hs.eg.db" (version 3.1.0) and 
used as the background. Enrichment analysis was carried 
out with the same R package, considering statistically sig-
nificant criteria as a minimum gene set size of 5, maxi-
mum gene set size of 5000, P value < 0.05, and FDR < 0.25.

Additionally, the Metascape database (http:// metas 
cape. org/ gp/ index. html) was employed to conduct func-
tional enrichment analysis on the identified differentially 
expressed gene lists. This resource not only provided 
comprehensive gene list annotation but also offered visu-
alization and export capabilities, enhancing the depth of 
our analysis.

Gene Set Enrichment Analysis (GSEA)
To conduct Gene Set Enrichment Analysis (GSEA), we 
acquired GSEA software (version 3.0) from the GSEA web-
site (https:// doi. org/ 10. 1073/ pnas. 05065 80102, http:// softw 
are. broad insti tute. org/ gsea/ index. jsp). The samples were cat-
egorized into disease and normal groups, and the molecu-
lar signatures database (https:// doi. org/ 10. 1093/ bioin forma 
tics/ btr260, http:// www. gsea- msigdb. org/ gsea/ downl oads. 
jsp) was utilized to download the c2.cp.kegg.v7.4.symbols.
gmt subset, focusing on relevant pathways and molecular 
mechanisms.

Using gene expression profiles and phenotype group-
ing, we set criteria for GSEA, including a minimum gene 
set size of 5, maximum gene set size of 5000, 1000 permu-
tations, P value < 0.05, and FDR < 0.25 to determine sta-
tistically significant results. Furthermore, comprehensive 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were carried out for the 
entire genome in alignment with GSEA methodology.

Immune infiltration analysis
CIBERSORT (http:// CIBER SORT. stanf ord. edu/) stands 
out as a widely utilized computational tool for assessing 

Table 1 A summary of dataset from different GEO datasets

Series Platfrom Affymetrix GeneChip Sample type

GSE121578 GPL16791 Illumina HiSeq 2500 (Homo sapiens) LQTS and BWS 1

Normal 1

GSE95486 GPL13534 Illumina HumanMethylation450 BeadChip BWS 3

Normal 21

https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html
http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
https://doi.org/10.1073/pnas.0506580102
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://CIBERSORT.stanford.edu/
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immune cell infiltration. Operating with the LM22 gene 
signature file, which defines 22 distinct immune cell sub-
types, we employed integrated bioinformatics methods 
through the CIBERSORT software package. The analysis 
focused on the merged and batch-corrected gene expres-
sion matrices from GSE121578 and GSE95486.

Utilizing linear support vector regression, CIBER-
SORT facilitated the deconvolution of immune cell sub-
type expression matrices, allowing for the estimation 
of immune cell abundances. A confidence threshold of 
p < 0.05 was established for sample selection, ensuring 
the inclusion of samples with sufficient confidence in the 
subsequent analysis.

Construction and analysis of Protein–Protein Interaction 
(PPI) network
The STRING database (http:// string- db. org/) is designed 
to aggregate, evaluate, and integrate publicly available 
information on protein–protein interactions, incorporat-
ing computational predictions. In our study, we employed 
the differential gene list as input into the STRING data-
base to construct a predicted Protein–Protein Interaction 
(PPI) network focused on core genes with a confidence 
score greater than 0.7.

For the analysis and visualization of this network, we 
utilized Cytoscape software, a tool offering biologists 
capabilities for biological network analysis and two-
dimensional (2D) visualization. The PPI network, formed 
by the STRING database, was imported into Cytoscape.

To pinpoint the most crucial genes within the network, 
four algorithms (MCC, MNC, EPC, Degree) were applied 
to compute the top ten relevant genes. The intersection 
of these results yielded a core gene list, which was then 
visualized and exported for further analysis.

Gene expression heatmap
The expression levels of core genes from the PPI net-
work within the batch-corrected merged matrices of 
GSE121578 and GSE95486 were depicted through a heat-
map generated using the R package "heatmap." This visu-
alization effectively showcased the variations in core gene 
expression among Long QT Syndrome, Beckwith-Wiede-
mann Syndrome, and normal blood samples.

CTD analysis
The Comparative Toxicogenomics Database (CTD) 
serves as a comprehensive resource, consolidating infor-
mation on interactions between chemicals, genes, func-
tional phenotypes, and diseases. Its extensive data offers 
a convenient platform for investigating disease-related 
environmental exposures and potential drug mecha-
nisms. In our study, the core genes identified were input 

into the CTD website to discern the most pertinent dis-
eases associated with these genes.

To visually represent the expression differences of each 
gene, radar plots were crafted using Excel. This graphi-
cal representation provided a concise and insightful over-
view of the gene expression variances in the context of 
the identified core genes.

miRNA
TargetScan (www. targe tscan. org) is an online database 
used for predicting and analyzing miRNA-target inter-
actions. In our study, TargetScan was used to screen for 
miRNAs regulating the core DEGs.

Results
Differential gene expression analysis
In this investigation, we applied predefined cutoff values 
to discern differentially expressed genes (DEGs) from 
the batch-corrected merged matrices of GSE121578 and 
GSE95486 pertaining to Long QT Syndrome and Beck-
with-Wiedemann Syndrome. The analysis resulted in the 
identification of a set of 500 DEGs, as illustrated in Fig. 1.

Functional enrichment analysis
Functional enrichment analysis of DEGs
Through the analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG), we gleaned 
insights into the functional roles of the identified differ-
entially expressed genes (DEGs). In the Biological Process 
(BP) category, these DEGs exhibited notable enrichment 
in processes related to the regulation of biological quality, 
circulatory system processes, regulation of blood circula-
tion, and cardiac conduction (Fig.  2A). In terms of Cel-
lular Component (CC), their enrichment was primarily 
observed in membrane regions, vesicles, and myofibrils 
(Fig.  2B). Moving to the Molecular Function (MF) cat-
egory, the DEGs were concentrated in activities related 
to cytokine receptor and neuropeptide receptor binding 
(Fig. 2C).

In the KEGG analysis, the DEGs demonstrated signifi-
cant enrichment in pathways such as the T cell receptor 
signaling pathway, MAPK signaling pathway, hematopoi-
etic cell lineage, adrenergic signaling in cardiomyocytes, 
and cardiac muscle contraction (Fig.  2D). This compre-
hensive analysis provided a nuanced understanding of 
the functional implications of the DEGs across various 
biological processes and pathways.

GSEA analysis
Additionally, we extended our analysis by performing 
Gene Set Enrichment Analysis (GSEA) on the entire 
genome. This approach allowed us to explore poten-
tial enrichment patterns in non-differentially expressed 

http://string-db.org/
http://www.targetscan.org
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genes and corroborate the findings from the analysis of 
differentially expressed genes (DEGs). The figure illus-
trates the intersections of enrichment items with those 
derived from the GO and KEGG analyses of DEGs.

The results indicated that DEGs were prominently 
enriched in various processes, including circulatory sys-
tem processes, regulation of blood circulation, cardiac 
conduction, vesicles, neuropeptide receptor binding, 
hematopoietic cell lineage, and cardiac muscle contrac-
tion (Fig.  2E,F,G,H). This comprehensive approach fur-
ther validated and reinforced our understanding of the 
functional significance of the identified DEGs across 
diverse biological processes and pathways.

Metascape enrichment analysis
Metascape enrichment analysis uncovered significant 
Gene Ontology (GO) enrichment items, including the 
tyrosine kinase receptor signaling pathway, positive regu-
lation of GTPase activity, innate immune response, and 
cardiac conduction (Fig. 3A). These findings shed light on 
the biological processes and pathways enriched among 
the analyzed genes.

Furthermore, we utilized enrichment networks colored 
by enrichment items and p-values to visually represent 
the associations and confidence levels of various enrich-
ment items (Fig. 3B,C,D). This approach provided a com-
prehensive view of the relationships between enriched 
terms, enhancing our understanding of the functional 
landscape associated with the analyzed genes.

Immune infiltration analysis
Utilizing the CIBERSORT package, we analyzed the 
merged matrices of GSE121578 and GSE95486 to assess 
the proportion of immune cells within the global gene 
expression matrix at a 95% confidence level. The results 
revealed a relatively high proportion of memory B cells 
and naive CD4 T cells in the samples (Fig. 4A), suggest-
ing their potential involvement in the underlying mecha-
nisms of Long QT Syndrome and Beckwith-Wiedemann 
Syndrome.

Furthermore, we investigated the correlation among 
infiltrating immune cells and uncovered a co-expression 
pattern of immune cell components (Fig.  4B). Notably, 
when Mast cells resting exhibited high expression levels, 
Macrophages M1 also displayed elevated expression. This 
observation suggests a significant positive correlation 
between Mast cells resting and Macrophages M1, which 
may have implications for the progression of Long QT 
Syndrome and Beckwith-Wiedemann Syndrome.

WGCNA analysis
In the WGCNA analysis, selecting the appropriate soft 
threshold power is critical for constructing meaningful 
gene co-expression networks. We conducted network 
topology analysis to determine the optimal soft threshold 
power, which was set to 9. This choice corresponded to 
the lowest power ensuring a scale-free topology fit index 
of 0.9 (Fig. 5A).

Subsequently, a hierarchical clustering tree was con-
structed for all genes, facilitating the generation and 

Fig. 1 Volcano plots illustrating the Differentially Expressed Genes (DEGs) in Long QT Syndrome and Beckwith‑Wiedemann Syndrome
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Fig. 2 Enrichment analysis of DEGs. A Gene Ontology Biological Process (GO BP) analysis. B Gene Ontology Cellular Component (GO CC) analysis. C 
Gene Ontology Molecular Function (GO MF) analysis. D Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. E Gene Set Enrichment Analysis 
(GSEA) Biological Process (BP) analysis. F GSEA Cellular Component (CC) analysis. G GSEA Molecular Function (MF) analysis. H GSEA KEGG analysis
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Fig. 3 Enrichment analysis using Metascape. A Enriched terms in Gene Ontology related to Tyrosine Kinase Receptor Signaling, Positive Regulation 
of GTPase Activity, Innate Immune Response, and Cardiac Conduction. B Enrichment network with colored nodes representing enriched terms 
and p‑value color‑coding indicating confidence
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Fig. 4 Immune infiltration analysis. A Proportion of immune cells in the whole gene expression matrix. B Co‑expression patterns of immune cell 
components shown in an intercorrelation heatmap
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Fig. 5 Weighted Gene Co‑expression Network Analysis identifies hub genes in Long QT Syndrome and Beckwith‑Wiedemann Syndrome. A 
Soft‑thresholding (power) with β = 8. B Hierarchical clustering dendrogram of all genes. C Module eigengene dendrogram. D Heatmap showing 
correlations between different modules. E Scatter plot depicting the correlation between Gene Significance (GS) and Module Membership (MM) 
for hub genes. F Venn diagram showing the intersection of differentially expressed genes
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analysis of interactions between important modules 
(Fig.  5B), resulting in the identification of five distinct 
modules (Fig. 5C). We further examined the correlation 
between module eigengenes (ME) and gene expression 
to derive Module Membership (MM) values. By applying 
a cutoff criterion (|MM|> 0.8), we identified ten highly 
connected genes as hub genes within clinically significant 
modules.

Moreover, module-phenotype correlation heatmaps 
(Fig.  5D) and scatterplots illustrating the correlation 
between gene significance (GS) and MM of relevant hub 
genes were generated (Fig. 5E) to elucidate their relation-
ship with clinical phenotypes.

Lastly, to integrate WGCNA results with differentially 
expressed genes (DEGs) for further analysis, we created a 
Venn diagram (Fig. 5F), enabling a comprehensive explo-
ration of shared and distinct features between the two 
analyses.

Protein–Protein Interaction (PPI) network construction 
and analysis
We utilized the STRING online database to construct 
a Protein–Protein Interaction (PPI) network of differ-
entially expressed genes (DEGs), followed by analysis 
using Cytoscape software (Fig. 6A). Through subsequent 
analysis, we identified hub genes using four algorithms, 
and the intersection of these algorithms yielded the core 
genes (Fig. 6B). The results from each algorithm (MCC, 
MNC, EPC, Degree) are depicted in Fig. 6C, D, E, F.

Ultimately, we identified 4 core genes from the inter-
section, namely CD8A, ICOS, CTLA4, and LCK. These 
core genes represent key players within the network and 
may play crucial roles in the pathogenesis of the studied 
syndromes.

Core gene expression heatmap
We depicted the expression patterns of core genes 
(CD8A, ICOS) in the merged matrices of GSE121578 
and GSE95486, focusing on Long QT Syndrome and 
Beckwith-Wiedemann Syndrome samples, through the 
creation of heatmaps (Fig.  7A). Notably, we observed 
a downregulation of core genes (CD8A, ICOS) in both 
Long QT Syndrome and Beckwith-Wiedemann Syn-
drome samples, contrasting with their upregulation in 
normal samples.

These findings suggest a potential reverse regulatory 
effect of these core genes on Long QT Syndrome and 
Beckwith-Wiedemann Syndrome. Further investigation 
is warranted to elucidate the precise mechanisms under-
lying this observed pattern and its implications for the 
pathogenesis of these syndromes.

CTD analysis
In this study, we utilized the CTD website to explore dis-
ease associations of the hub gene list, enriching our com-
prehension of gene-disease relationships. Our analysis 
revealed that the core genes (CD8A, ICOS) are linked to 
various conditions, including heart diseases, Long QT 
Syndrome, heart failure, hepatomegaly, hypoglycemia, 
and inflammation (Fig. 7B).

This insight into the diverse disease connections of the 
core genes provides valuable context for understanding 
their potential roles and implications in the pathogenesis 
of these conditions. Further investigations could eluci-
date the precise mechanisms underlying these associa-
tions and their relevance to clinical outcomes.

Prediction and functional annotation of miRNAs associated 
with hub genes
In this investigation, we leveraged TargetScan to iden-
tify relevant miRNAs associated with the hub gene list, 
thereby deepening our understanding of gene expression 
regulation (refer to Table  2). Our analysis revealed that 
the CD8A gene is linked to hsa-miR-326 and hsa-miR-
330-5p, while the ICOS gene is associated with hsa-miR-
26a-5p, hsa-miR-26b-5p, and hsa-miR-1297.

This exploration sheds light on the potential regula-
tory mechanisms involving miRNAs and the hub genes, 
offering valuable insights into the intricate molecular 
networks underlying the studied syndromes. Further 
investigations could elucidate the functional implications 
of these miRNA-gene interactions in disease pathogen-
esis and potential therapeutic strategies.

Discussion
Long QT Syndrome (LQTS) is typically characterized by 
prolonged QT intervals on electrocardiograms, which 
can lead to abnormal excitation and repolarization of 
ventricular myocytes, increasing the risk of arrhythmias. 
These arrhythmias, such as torsades de pointes and ven-
tricular fibrillation, can result in severe outcomes like 
cardiac arrest and sudden death [3, 17]. Patients with 
LQTS are prone to experiencing arrhythmias during 
exercise, emotional stress, or use of stimulating drugs, 
increasing the risk of outcomes such as syncope and 
cardiac arrest [18]. Beckwith-Wiedemann Syndrome 
(BWS), on the other hand, is characterized by ST seg-
ment elevation and T-wave inversion in V1 and V2 leads 
on electrocardiograms. This condition may disrupt the 
electrical activity of the ventricular muscles [19, 20]. 
Patients with BWS may experience arrhythmias during 
nighttime rest or upon waking up in the morning, lead-
ing to serious consequences like syncope and sudden 
death [21]. Comprehensive exploration of the molecular 
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Fig. 6 Protein–Protein Interaction (PPI) network and identification of hub genes. A PPI network. B Hub genes identified using four algorithms, 
with the union of these sets as the core genes. C, D, E, F Four core intersecting genes (CD8A, ICOS, CTLA4, LCK)
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Fig. 7 Expression profiles of hub genes in samples. A Heatmap visualizing gene expression in the merged matrix of GSE121578 and GSE95486. 
B Comparative Toxicogenomics Database (CTD) analysis linking core genes (CD8A, ICOS) to heart diseases, Long QT Syndrome, heart failure, 
hepatomegaly, hypoglycemia, and inflammation
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mechanisms underlying these syndromes is crucial. The 
findings of this study indicate that in Long QT Syndrome 
and Beckwith-Wiedemann Syndrome, the gene expres-
sion levels of CD8A and ICOS are downregulated, and 
this decreased expression is associated with poorer prog-
nosis. While CD8A and ICOS are immune-related genes, 
they might play distinct roles in the development of these 
electrophysiological disorders. These discoveries could 
contribute to a deeper understanding of the pathogenesis 
of these syndromes and hold significant importance for 
targeted drug research, offering new avenues for future 
therapeutic investigations.

CD8A is a protein present on the surface of CD8 T 
cells, playing a crucial role in the immune system. CD8 
T cells are a vital component of cellular immunity, 
responsible for recognizing and eliminating aberrant 
cells within the body, such as virus-infected cells and 
certain tumor cells [22, 23]. The CD8A protein is part 
of the CD8 T cell surface and, together with the T cell 
receptor (TCR), assists in the recognition and binding of 
antigens by T cells. When the TCR of a T cell binds to 
an antigen, CD8A enhances the T cell’s sensitivity to the 
antigen, thereby promoting an immune response against 
abnormal or infected cells [24, 25]. However, increasing 
evidence suggests that the immune system’s role extends 
beyond immune responses and may play significant roles 
in other physiological processes [26]. A study by Zheng 
[27] explored CD8A as a prognostic and immunothera-
peutic predictive biomarker, evaluating bladder cancer 
using MRI radiomics features. The study revealed that 
among 12 genes associated with T cell cytotoxicity path-
ways, CD8A emerged as a novel protective gene, showing 
the highest correlation with T cells and macrophages M1 
in BCa. On the other hand, Long QT Syndrome is a dis-
ease associated with cardiac electrophysiological abnor-
malities, potentially leading to severe arrhythmias and 
sudden death. Although Long QT Syndrome is primarily 
linked to ion channel abnormalities in cardiac electrical 
activity, immune system anomalies might also influence 
the cardiovascular system in certain diseases. CD8A’s 
specific role in Long QT Syndrome might be attributed to 
the potential impact of CD8 T cells’ immunomodulatory 
functions on cardiac electrical activity to some extent.

Beckwith-Wiedemann Syndrome is primarily asso-
ciated with cardiac electrical activity abnormalities. 
Research has also indicated that the immune system’s 

role in the cardiovascular system might be more com-
plex than initially anticipated [28]. The regulation of CD8 
T cells could potentially influence the stability of cardiac 
electrophysiology, either promoting or inhibiting the 
onset or progression of diseases. For instance, CD8 T 
cells may release cytokines such as tumor necrosis factor 
(TNF) during inflammatory processes. These cytokines 
could impact cardiac electrophysiological processes, and 
inflammatory responses might lead to changes in car-
diac electrical activity, affecting cardiac stability [29, 30]. 
McElroy [31] investigated a case with a comprehensive 
immune, cardiac, and behavioral phenotype. The find-
ings indicated that the manifestation of Beckwith-Wiede-
mann Syndrome varies across the patient population, but 
certain domains, including immunology, cardiology, and 
behavioral differences, stand out.

ICOS (Inducible T cell CO-Stimulator) is a T cell sur-
face protein belonging to the immunoglobulin super-
family (IgSF). It serves as a co-stimulatory molecule and 
plays a crucial role in regulating T cell activation and 
immune responses within the immune system. ICOS 
is expressed on the cell membrane of T cells [32]. ICOS 
binds to its ligand, ICOSL (ICOS Ligand), and this inter-
action provides a co-stimulatory signal during T cell acti-
vation, enhancing the immune response [33]. During T 
cell activation, ICOS provides a co-stimulatory signal 
to intensify and sustain the immune response’s strength 
and duration. The binding of ICOS to ICOSL activates 
T cells, promoting their proliferation and differentiation 
into effector T cells, thereby enhancing the effectiveness 
of the immune response. ICOS is also believed to play a 
role in regulating T cell memory responses and immune 
tolerance. However, the immune system might also have 
implications for cardiovascular function. Dysregulated 
immune system activity could trigger inflammatory 
responses, which might be linked to cardiac electrophysi-
ological instability. ICOS might participate in regulating 
inflammation, suggesting its potential role in the patho-
genesis of long QT syndrome. Changwei [34] investi-
gated the involvement of the co-stimulatory molecule 
ICOS in promoting the establishment of CD8 + tissue-
resident memory (Trm) T cells in tissues. The study high-
lighted the significance of ICOS, showing that a lack of 
ICOS or ICOSL blockade impaired the establishment of 
CD8 + Trm cells without affecting their maintenance.

ICOS might play a potential role in cardiac immune 
regulation and could influence the development of car-
diovascular diseases by modulating T cell activation 
and immune responses [35]. Such cardiovascular dis-
eases encompass conditions like Beckwith-Wiedemann 
syndrome, where abnormal inflammation and immune 
responses could also be implicated [36]. Disruptions 
in inflammation and immune responses might impact 

Table 2 A summary of miRNAs that regulate hub genes

Gene MIRNA

1 CD8A hsa‑miR‑326 hsa‑miR‑330‑5p

2 ICOS hsa‑miR‑26a‑5p hsa‑miR‑26b‑5p hsa‑miR‑1297
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cardiac immune regulation and function [37]. In this 
context, ICOS expression varies, and its prognosis might 
differ in cases of Beckwith-Wiedemann syndrome. Our 
study’s findings indicate that lower ICOS expression is 
associated with poorer prognostic outcomes, aligning 
with ICOS’s role as a prognostic marker in other diseases.

The aforementioned literature review aligns with our 
results. CD8 T cells, as part of the immune system, can 
potentially influence cardiovascular disease develop-
ment by secreting cytokines and regulating inflamma-
tory responses. Immune cell activation and inflammatory 
reactions might impact cardiac electrophysiology, thus 
affecting conditions like long QT syndrome. ICOS, as a 
co-stimulatory molecule, contributes to T cell activation 
and immune responses. Its capacity to enhance T cell 
immune responses could influence cardiovascular dis-
ease development. ICOS’s involvement in autoimmunity 
and inflammatory responses could also affect cardiovas-
cular health.

Despite rigorous bioinformatics analysis in this study, 
some limitations remain. The study lacks animal experi-
ments involving gene overexpression or knockout to fur-
ther validate functional roles. Therefore, future research 
should delve deeper into these aspects for a more com-
prehensive understanding.

Conclusion
In summary, although Long QT Syndrome and Beckwith-
Wiedemann Syndrome are distinct disorders – one involv-
ing cardiac electrophysiological abnormalities and the 
other characterized by growth anomalies and multi-organ 
system irregularities – there might be underlying immu-
nological commonalities or associations. CD8A and ICOS, 
by exerting their roles within the immune system, could in 
certain contexts link immune dysregulation to cardiac elec-
trophysiology alterations leading to Long QT Syndrome, 
or potentially impact other organ systems contributing to 
Beckwith-Wiedemann Syndrome. Low expression of CD8A 
and ICOS is associated with poorer prognoses in both Long 
QT Syndrome and Beckwith-Wiedemann Syndrome.
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