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Abstract
Background Accurate prediction of visceral pleural invasion (VPI) in lung adenocarcinoma before operation 
can provide guidance and help for surgical operation and postoperative treatment. We investigate the value of 
intratumoral and peritumoral radiomics nomograms for preoperatively predicting the status of VPI in patients 
diagnosed with clinical stage IA lung adenocarcinoma.

Methods A total of 404 patients from our hospital were randomly assigned to a training set (n = 283) and an 
internal validation set (n = 121) using a 7:3 ratio, while 81 patients from two other hospitals constituted the external 
validation set. We extracted 1218 CT-based radiomics features from the gross tumor volume (GTV) as well as the gross 
peritumoral tumor volume (GPTV5, 10, 15), respectively, and constructed radiomic models. Additionally, we developed a 
nomogram based on relevant CT features and the radscore derived from the optimal radiomics model.

Results The GPTV10 radiomics model exhibited superior predictive performance compared to GTV, GPTV5, and 
GPTV15, with area under the curve (AUC) values of 0.855, 0.842, and 0.842 in the three respective sets. In the clinical 
model, the solid component size, pleural indentation, solid attachment, and vascular convergence sign were 
identified as independent risk factors among the CT features. The predictive performance of the nomogram, which 
incorporated relevant CT features and the GPTV10-radscore, outperformed both the radiomics model and clinical 
model alone, with AUC values of 0.894, 0.828, and 0.876 in the three respective sets.
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Background
Lung cancer ranks among the most prevalent and 
lethal malignant tumors [1], with lung adenocarcinoma 
(LUAD) constituting the predominant pathological 
subtype [2]. Visceral pleural invasion (VPI) is strongly 
related to adverse postoperative prognoses [3]. The pres-
ence of VPI elevates the T stage of lung cancer from T1 
to T2 and advances the TNM stage from IA to IB [3]. 
Notably, recent research underscores the significant 
influence of VPI status on the decision-making process of 
thoracic surgeons regarding the selection of an appropri-
ate surgical approach for lung cancer [4]. In cases where 
VPI is absent, sublobectomy serves as a viable option to 
preserve lung function.3 Conversely, if the tumor does 
invade the visceral pleura, a lobectomy coupled with a 
more extensive lymph node dissection may yield a more 
favorable prognosis [5]. Unfortunately, the conventional 
intraoperative diagnosis of VPI is time-consuming and 
prone to inaccuracies, with a reported accuracy of only 
56.5% [6]. Consequently, the current gold standard, rely-
ing on postoperative pathological diagnosis [2], intro-
duces a delay in determining an appropriate surgical 
plan, highlighting the need for a reliable preoperative 
predictive method for VPI status to ensure precise treat-
ment of lung cancer.

Previous studies have used CT features to predict VPI 
status [7–16]. Notably, lung cancer presenting as a pure 
ground-glass nodule (pGGN) on CT or with no contact 
with the pleura was associated with a VPI-negative status 
[12–15]. Conversely, direct tumor-pleural contact, pleu-
ral indentation sign, and pleural tags were identified as 
high-risk CT features for predicting VPI status in LUAD 
[16]. However, the accuracy of VPI prediction based 
on different combinations of these high-risk CT signs 
ranged from 62.7 to 72.3%, with positive predictive values 
ranging from 44.1 to 56.4% [16]. This suggests a substan-
tial proportion of false positive predictions, highlighting 
the ongoing challenge in accurately determining whether 
a part-solid or solid nodule in contact with the pleura has 
invaded the visceral pleura based on CT morphological 
features alone.

Radiomics, a method for extracting high-dimensional 
features from segmented images, including gray level 
changes and voxel spatial relationships, holds huge 
promise in achieving accurate diagnoses and prognosis 
assessments of diseases through feature selection and 
model establishment [17–19]. By leveraging radiomics, 
the subjective interpretation of CT morphological fea-
tures by observers can be circumvented, and a wealth 

of digital information within the image, imperceptible 
to the human eye, can be comprehensively mined and 
integrated [20]. Previous pathological studies have indi-
cated the presence of tumor-infiltrating lymphocytes and 
tumor-associated macrophages on the edge of invasive 
lesions [21], demonstrating associations with metastasis 
[22]. The peritumoral region, as an indicator of the tumor 
microenvironment, holds critical biological significance 
in reflecting the aggressive behavior of the tumor [23, 
24]. Recent studies have demonstrated that incorporat-
ing radiomics features from the peritumoral region into 
modeling analysis can enhance predictive accuracy in 
the preoperative assessment of pathological invasiveness 
[17], lymphovascular invasion [18], lymph node metas-
tasis [25], and spread through air space in lung cancer 
patients, compared to models relying solely on intratu-
moral features [26]. While previous investigations have 
successfully applied radiomics for assessing VPI status in 
early lung cancer [27–32], their primary focus has been 
on intratumoral features, with limited exploration of the 
potential contribution of peritumoral radiomics features. 
Additionally, the reliability and reproducibility of these 
models have not been validated in external sets.

In this study, we hypothesized that high-throughput 
feature extraction within the volume of interest (VOI), 
encompassing both intratumoral and peritumoral 
regions, can not only capture the tumor’s intrinsic het-
erogeneity but also comprehensively depict the spatial 
structural characteristics of the tumor and its adjacent 
tissues in a higher-dimensional space. Consequently, we 
developed a radiomics model based on the GTV and the 
incorporation of peritumoral regions at 5  mm, 10  mm, 
and 15  mm distances. Our objective was to assess the 
radiomics model’s effectiveness in predicting VPI status 
in early subpleural LUAD and to investigate whether its 
diagnostic performance could be further enhanced when 
combined with traditional CT morphological features.

Methods
Patients
A total of 1146 patients with clinical stage IA LUAD, who 
underwent surgery between July 2014 and July 2022 at 
three hospitals, were included retrospectively.

Inclusion criteria were as follows: (1) Clinical stage 
IA LUAD (cT1N0M0, with the maximum tumor 
length ≤ 3  cm); (2) Tumors located under the pleura, in 
direct contact with the pleura or connected to the pleura 
via lines or strips (pleural tags) [9]; (3) Minimum dis-
tance from the lesion to the pleura (DLP) ≤ 10  mm; (4) 

Conclusions The nomogram, integrating radiomics features and CT morphological features, exhibits good 
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Thin-slice chest CT (slice thickness ≤ 2  mm) performed 
within 2 weeks before surgery; (5) Complete pathological 
report on VPI status.

Exclusion criteria were as follows: (1) Pathologically 
confirmed atypical adenomatous hyperplasia, or adeno-
carcinoma in situ (n = 71); (2) Tumors neither in direct 
contact with the pleural surface nor with pleural tags 
(n = 278); (3) DLP > 10 mm (n = 65); (4) Prior treatment or 
biopsy before CT (n = 15); (5) Time interval of more than 
2 weeks between CT examination and surgery (n = 10); 
(6) Poor CT image quality (n = 78); (7) Presence of pGGN 
(n = 123); (8) Unavailability of VPI status pathological 
report (n = 21).

Ultimately, 404 patients from our institution (Hospital 
1) were included as the internal cohort and were ran-
domly divided into a training set (n = 283) and an inter-
nal validation set (n = 121) at a ratio of 7:3. An external 
validation set was formed, comprising patients from Hos-
pital 2 (n = 25) and Hospital 3 (n = 56) (Fig.  1). Patients 
were categorized into two groups based on the VPI sta-
tus determined during pathology: VPI-positive and VPI-
negative. Specific details about the collected clinical and 
pathological data can be found in the Additional file 1. 
This study was approved by the Ethics Committee of our 
Hospital (decision number: CZ-20210528-01), and sub-
jects’ informed consent was exempted.

CT morphological features evaluation and clinical model 
construction
The study’s workflow is depicted in Fig.  2. CT image 
acquisition details are provided in the Additional file 2. 
The DICOM images of non-enhanced chest CT scans 
were imported into the Radiant DICOM Viewer software 
(Version 4.2.1, Medixant, Poland) for visualization of 
tumor CT morphological features through multi-planar 
reconstruction (MPR) and maximum density projec-
tion (MIP). Two thoracic radiologists with 7 years and 9 
years of working experience blinded to patient informa-
tion, conducted qualitative assessments and quantitative 
measurements of the tumors. Consensus was reached 
through consultation in cases of differing opinions 
regarding qualitative indicators. The average of the mea-
surements by the two radiologists was used for quantita-
tive parameters analysis.

The assessment included the following CT qualita-
tive indicators: (i) Tumor-pleura signs, such as tumors 
in direct contact with the pleura (pleural attachment) or 
connected to the pleura via linear strands (pleural tags) 
[9] (ii) Pleura signs involving tumor-induced deviation of 
the pleura from its original position (pleural indentation) 
[15]; and the presence of a solid component of the tumor 
in direct contact with the pleura (solid attachment); 
(iii) Tumor signs, encompassing density type (solid or 
part-solid), shape (irregular or oval/round), interface 
(ill-defined or well-defined), two marginal characteris-
tics (lobulation and spiculation), two internal features 

Fig. 1 The flowchart of inclusion and exclusion criteria of patients
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(vacuole sign, cavity or cyst sign), and three adjacent 
structural features (vascular convergence sign, air bron-
chogram signs, and emphysema in the lobe of the tumor) 
[33, 34].

For CT quantitative parameter measurement: (i) The 
maximum diameter of the tumor (tumor size, T) and 
the maximum diameter of the solid component (con-
solidation size, C) were measured on MPR lung window 
images, and the consolidation-tumor ratio (CTR) was 
calculated [35]. (ii) For tumors with pleural tags, the min-
imum vertical DLP at the lung window on MPR images 
was measured [7]. (iii) For tumors with pleural attach-
ment and a DLP of 0  mm, the longest interface length 
of the entire tumor and solid component was measured 
using a straight line on the lung window of the MPR 
images [11]. The illustration of the measurements of DLP, 
pleural contact length and solid pleural contact length 
are shown in Fig. 3.

CT images preprocessing and tumor segmentation
Prior to segmentation, standard resampling and grayscale 
discretization of CT images were performed. The ITK-
SNAP software (version 3.80, www.itksnap.org) was used 
for slice-by-slice delineation of the GTV along the tumor 
boundary, with the 3D region defined as the VOI. GTV 
was defined as the entire visible tumor area identified 
subjectively by the radiologists. The segmentation aimed 
to exclude vessels, bronchi, and pleura as much as pos-
sible during the process.

The intraclass correlation coefficients (ICCs) were cal-
culated to assess agreements between and within observ-
ers for the selection of radiomics features with high 
reproducibility and reliability. Inter-observer agreements 
were evaluated by two thoracic radiologists with 7 years 
and 9 years of working experience, who independently 
segmented 30 randomly selected tumors. Intra-observer 
agreements were assessed by the 9-year experienced radi-
ologist, who re-segmented 30 tumors one month later. 
The remaining tumor segmentations were performed 
solely by the 9-year experienced radiologist, with both 
radiologists blinded to the patients’ pathological informa-
tion during the segmentation process.

The VOI segmentation of the GTV was expanded out-
ward by 5  mm, 10  mm, and 15  mm, respectively, and 
pixel filtering was conducted to automatically exclude 
peritumoral non-pulmonary tissues (such as peritumoral 
vessels, soft tissues, and chest wall, mediastinum, and 
abdominal structures) based on pixel thresholding using 
a Python platform (version 3.11). The resulting VOI seg-
mentation of the GPTV in Nifty format was generated, 
named GPTV5, GPTV10, and GPTV15, accordingly.

Radiomics feature extraction and data preprocessing
The extraction of features was carried out using 
Pyradiomics (version 3.0.1, https://pyradiomics.Read 
the docs.io/en/latest/changes.html). A total of 1218 
radiomics features were extracted, with detailed fea-
ture types provided in Additional file 3 and 4. Given 

Fig. 2 The workflow of this study
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the inclusion of CT images from multiple hospitals and 
diverse CT protocols, the intensities of all radiomics fea-
tures were normalized using the ComBat compensation 
method (https://forlhac.shinyapps.io/Shiny_ComBat) 
and z-score transformation (z = x-µ/σ) [36–38].

Radiomics feature selection and model construction
ICCs were employed to evaluate the consistency between 
the segmented GTV and the corresponding GPTV5, 
GPTV10, and GPTV15 radiomics features for intra-
observer and inter-observer assessments. The “psych” 
package of R software was used to assess the consistency 
of the radiomics features. To avoid overfitting, the maxi-
mal redundancy minimal relevance (mRMR) algorithm 
and the least absolute shrinkage and selection opera-
tor (LASSO) logistic regression method were applied to 
features with good consistency (ICC > 0.75) in the train-
ing set to limit the dimension of the features. A 10-fold 
cross-validation process was employed to select the 
optimal hyperparameter λ. Features with coefficients 
not equal to zero under the optimal λ were chosen for 
constructing the radiomics model. The radscore was cal-
culated by summing the selected features, weighted by 
their coefficients. Wilcoxon tests were used to compare 
differences between the VPI-positive and VPI-negative 
groups. Radiomics models were developed based on 
GTV, GPTV5, GPTV10, and GPTV15, and their diagnos-
tic efficacy was evaluated. The best radiomics model was 
determined by the highest AUC value in the validation 
set. The analysis process is depicted in Fig. 2.

Clinical model and nomogram construction
In the training set, a multivariate logistic regression anal-
ysis was performed using clinical and CT morphological 
features with P < 0.1 in univariate logistic analysis. The 
best variable combinations were selected through a back-
ward stepwise selection process to establish the clinical 
prediction model. The variables in the clinical model and 
the radscore from the optimal radiomics model were 
used as predictive variables to create the combined pre-
diction model and the corresponding nomogram. The 
predictive performance of each model was assessed in 
both internal and external validation sets. The model 
development process is illustrated in Fig. 2.

Statistical analysis
IBM SPSS Statistics (version 20.0, USA) and R software 
(version 4.2.2, http://www.Rproject.org) were used for 
statistical analysis. Details of the statistical analysis pro-
cess are presented in Additional file 5.

Results
Clinical prediction model
Additional file 6 provides the clinical and pathological 
data for the three respective sets. Regarding CT features, 
there was strong agreement between the measurements 
of the two observers (ICC 0.954–0.996), and qualitative 
evaluation indicators exhibited high consistency (Kappa 
0.832-1.000). Additional inter-observer agreement results 
for each CT feature are detailed in Additional file 7. Uni-
variate analysis revealed significant differences (P < 0.05) 

Fig. 3 The illustration of the measurements of DLP, pleural contact length and solid pleural contact length. (A) A 53-year-old man presented with a 
mGGN in the upper lobe of the right lung (white arrow), with a DLP of 4.64 mm. The pathological results were invasive LUAD with VPI-positive. (B) A 
64-year-old man presented with a mGGN in the lower lobe of the right lung (white arrow), which was in direct contact with the interlobar fissure and 
accompanied by pleural indentation sign, with solid components in contact with the pleura. The green line was a straight line to measure the pleura 
contact length (14.2 mm), and the red line was the solid pleural contact length (8.51 mm). The pathological results were invasive LUAD with VPI-positive.
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between the VPI-positive and VPI-negative groups for 
several CT features, including tumor size, solid compo-
nent size, CTR, whole tumor pleural contact length, solid 
component pleural contact length, density type, pleural 
indentation sign, solid attachment sign, spiculation sign, 
vascular convergence sign, and the presence of emphy-
sema. Notably, the VPI-positive group exhibited a higher 
prevalence of solid nodules, solid attachments, pleural 
indentation, spiculation, and vascular convergence signs, 
along with significantly larger tumors and solid compo-
nents, longer CTR, and longer whole tumor and solid 
pleural contact lengths (all P < 0.05; Table 1).

Multivariate logistic regression analysis was employed 
to select the optimal combination of predictive vari-
ables for constructing the clinical model. The indepen-
dent risk factors for VPI were the solid component size 
(OR = 1.23, 95% CI 1.16 ~ 1.30, P < 0.001), pleural indenta-
tion sign (OR = 3.36, 95% CI 1.61 ~ 7.02, P = 0.001), solid 
attachment sign (OR = 2.98, 95% CI 1.56 ~ 5.70, P < 0.001), 
and vascular convergence sign (OR = 4.51, 95% CI 
1.49 ~ 13.69, P = 0.008), as shown in Table 2.

Radiomics model
A total of 1218 radiomic features were extracted from the 
VOI of GTV, GPTV5, GPTV10, and GPTV15, respectively. 
Among these features, 72.2% (880/1218) of GTV features, 
92.3% (1124/1218) of GPTV5 features, 97.1% (1183/1218) 
of GPTV10 features, and 97.8% (1191/1218) of GPTV15 
features demonstrated good repeatability, with inter-class 
and intra-class ICCs exceeding 0.75. Among the features 
with ICC > 0.75, the mRMR algorithm was initially used 
to eliminate redundant and irrelevant features, retain-
ing 30 features in each group. Subsequently, the LASSO 
regression algorithm was applied to select the optimized 
feature subset for constructing the final model. A 10-fold 
cross-validation process was used to determine the opti-
mal hyperparameter λ. The optimal λ values for GTV, 
GPTV5, GPTV10, and GPTV15 were 0.153, 0.131, 0.068, 
and 0.100, respectively (see Additional file 8). With these 
optimal λ values, 2, 5, 7, and 3 features were selected 
to construct the radiomics models for GTV, GPTV5, 
GPTV10, and GPTV15, respectively (Fig. 4). The features 
used for model construction and their ICC details are 
provided in Additional file 9. The radscore formulas for 
the four radiomics models can be found in Additional file 
10. The radscore for VPI-positive groups in all models 
was significantly higher than for VPI-negative groups (all 
P < 0.05), as shown in Additional file 11.

Efficacy comparison of radiomics models
The AUC values for the GTV, GPTV5, GPTV10, and 
GPTV15 models in the training set for predicting VPI 
status were 0.838, 0.849, 0.855, and 0.841, respectively. 
In the internal validation set, the corresponding AUC 

values were 0.808, 0.855, 0.842, and 0.824. Similarly, 
in the external validation set, the AUC values were 
0.809, 0.826, 0.842, and 0.823, respectively. The predic-
tion performance of each radiomics model is summa-
rized in Table 3, and the ROC curves for each radiomics 
model in the three sets can be found in Additional file 
12. The DeLong test indicated that in the training set, 
the GPTV10 model outperformed the GPTV15 model, 
and the difference was statistically significant (Z = 2.076, 
P < 0.05). In the internal validation set, the performance 
of GPTV5 and GPTV10 models was superior to that of 
GTV, and the differences were statistically significant 
(Z = 3.030 and 2.163, both P < 0.05). The radiomics model 
with the highest AUC value in the external validation set 
was selected as the best radiomics model. Consequently, 
a combined model was constructed based on the GPTV10 
model’s radscore and CT morphological features.

Efficacy evaluation of combined models
The radscore from the GPTV10 model and CT morpho-
logical features included in the clinical model were used 
as predictive variables to construct a combined model 
and the corresponding nomogram. The formula for the 
combined model was as follows:

Nomoscore = (Intercept) * -2.738 + solid component 
size * 0.076 + pleural indentation sign * 1.169 + the pres-
ence of solid component contact pleura * 1.178 + vascu-
lar convergence sign * 1.329 + the presence of combined 
emphysema * 0.650 + GPTV10-radscore * 1.110.

The AUC values of the clinical model were 0.885, 0.814, 
and 0.838 in the three respective sets. The AUC values 
of the combined model were 0.894, 0.828, and 0.876 in 
the three respective sets, as presented in Table  4. The 
nomogram and examples of its clinical application can be 
found in Figs. 5 and 6. The ROC curves of the GPTV10-
based radiomics model, clinical model, and combined 
model for predicting VPI in the three sets are shown in 
Fig. 7.

The DeLong test showed that the combined model 
outperformed the GPTV10 radiomics model in the train-
ing set (Z = 2.987, P < 0.05). In the external validation set, 
the combined model performed better than the clinical 
model (Z = 2.348, P < 0.05). The Hosmer-Lemeshow test 
indicated that the combined model was a good fit in all 
three sets (all P > 0.05), as shown in Fig. 8. The decision 
curve analysis (DCA) curves revealed that the combined 
model achieved a better net benefit in predicting VPI sta-
tus than the clinical model and the GPTV10 radiomics 
model, as shown in Fig. 9.

Discussion
For part-solid or solid nodules in contact with the pleura, 
selecting the optimal surgical approach remains chal-
lenging for thoracic surgeons. In this respect, given that 
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CT features Training set (n = 283) Internal validation set (n = 121) External validation set (n = 81)
VPI-
Negative ( 
n = 149)

VPI-Positive 
(n = 134)

P-value VPI-Nega-
tive
(n = 61)

VPI-Positive
(n = 60)

P-value VPI-
Negative(n = 48)

VPI-Positive
(n = 33)

P-
value

Tumor size (mm) 18.4
(15.0, 22.7)

24.1
(19.5, 27.0)

<0.001 19.1
(14.4, 22.4)

24.5
(20.7, 27.8)

<0.001 19.1
(13.7, 23.4)

21.0
(19.4, 28.6)

0.004

Solid component size 
(mm)

9.2
(5.0, 14.3)

19.4
(13.8, 23.0)

<0.001 9.3
(6.4, 14.0)

19.1
(13.2, 24.0)

<0.001 10.1
(5.0, 15.5)

18.5
(11.6, 22.3)

<0.001

CTR (%) 49.0
(26.5, 72.0)

85.6
(66.1, 100.0)

<0.001 53.7
(33.1, 79.8)

87.9
(67.5, 100.0)

<0.001 55.3
(36.6, 81.1)

81.8
(62.5, 96.6)

0.002

Pleural contact 
length (mm)

6.3
(0.0, 13.3)

10.9
(0.0, 17.8)

0.009 7.6
(0.0, 12.7)

7.2
(0.0, 16.4)

0.835 0.0
(0.0, 12.7)

10.0
(0.0, 14.7)

0.067

Solid pleural contact 
length (mm)

0.0 (0.0, 4.9) 8.1 (0.0, 12.8) < 0.001 0.0 (0.0, 5.7) 2.0 (0.0, 10.7) 0.097 0.0 (0.0, 2.7) 6.4 (0.0, 
11.9)

< 0.001

DLP (mm) 0.0 (0.0, 2.6) 0.0 (0.0, 2.6) 0.447 0.0 (0.0, 2.6) 0.0 (0.0, 2.8) 0.386 1.3 (0.0, 2.3) 0.0 (0.0, 2.4) 0.187
Tumor-pleura 
relationship

0.227a 0.238a 0.095a

Pleural tags 65 (43.6%) 49 (36.6%) 23 (37.7%) 29 (48.3%) 25 (52.1%) 11 (33.3%)
Pleural attachment 84 (56.4%) 85 (63.4%) 38 (62.3%) 31 (51.7%) 23 (47.9%) 22 (66.7%)
Pleural indentation <0.001a 0.020a 0.002a

 No 66 (44.3%) 24 (17.9%) 24 (39.3%) 12 (20.0%) 30 (62.5%) 9 (27.3%)
 Yes 83 (55.7%) 110 (82.1%) 37 (60.7%) 48 (80.0%) 18 (37.5%) 24 (72.7%)
Solid attachment < 0.001a 0.928a 0.001a

 No 92 (61.7%) 50 (37.3%) 31 (50.8%) 30 (50.0%) 35 (72.9%) 12 (36.4%)
 Yes 57 (38.3%) 84 (62.7%) 30 (49.2%) 30 (50.0%) 13 (27.1%) 21 (63.6%)
Density type <0.001a 0.001a 0.183b

 Part-solid 136 (91.3%) 80 (59.7%) 54 (88.5%) 38 (63.3%) 44 (91.7%) 26 (78.8%)
 Solid 13 (8.7%) 54 (40.3%) 7 (11.5%) 22 (36.7%) 4 (8.3%) 7 (21.2%)
Shape 0.228a 0.712 0.082a

 Irregular 34 (22.8%) 39 (29.1%) 16 (26.2%) 14 (23.3%) 19 (39.6%) 7 (21.2%)
 Round/Oval 115 (77.2%) 95 (70.9%) 45 (73.8%) 46 (76.7%) 29 (60.4%) 26 (78.8%)
Lobulation 0.633a 0.660b 0.614b

 No 7 (4.7%) 8 (6.0%) 2 (3.3%) 4 (6.7%) 4 (8.3%) 1 (3.0%)
 Yes 142 (95.3%) 126 (94.0%) 59 (96.7%) 56 (93.3%) 44 (91.7%) 32 (97.0%)
Spiculation < 0.001a 0.001a 0.008b

 No 136 (91.3%) 75 (56.0%) 56 (91.8%) 40 (66.7%) 48 (100.0%) 27 (81.8%)
 Yes 13 (8.7%) 59 (44.0%) 5 (8.2%) 20 (33.3%) 0 (0.0%) 6 (18.2%)
Interface 0.223c N/A 0.407c

 Ill-defined 0 (0.0%) 2 (1.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (3.0%)
 Well-defined 149 (100.0%) 132 (98.5%) 61 (100.0%) 60 (100.0%) 48 (100.0%) 32 (97.0%)
Air bronchogram 0.058a 0.169a 0.088a

 No 89 (59.7%) 65 (48.5%) 32 (52.5%) 24 (40.0%) 35 (72.9%) 18 (54.5%)
 Yes 60 (40.3%) 69 (51.5%) 29 (47.5%) 36 (60.0%) 13 (27.1%) 15 (45.5%)
Vacuole sign 0.080a 0.478a 0.260a

 No 115 (77.2%) 91 (67.9%) 39 (63.9%) 42 (70.0%) 34 (70.8%) 27 (81.8%)
 Yes 34 (22.8%) 43 (32.1%) 22 (36.1%) 18 (30.0%) 14 (29.2%) 6 (18.2%)
Cavity or cyst sigh 0.482a 0.774a 0.415b

 No 139 (93.3%) 122 (91.0%) 55 (90.2%) 55 (91.7%) 43 (89.6%) 32 (97.0%)
 Yes 10 (6.7%) 12 (9.0%) 6 (9.8%) 5 (8.3%) 5 (10.4%) 1 (3.0%)
Vascular conver-
gence sign

< 0.001a 0.064a 0.014b

 No 144 (96.6%) 103 (76.9%) 58 (95.1%) 51 (85.0%) 47 (97.9%) 26 (78.8%)
 Yes 5 (3.4%) 31 (23.1%) 3 (4.9%) 9 (15.0%) 1 (2.1%) 7 (21.2%)
Emphysema < 0.001a 0.721b 0.019b

Table 1 Univariate analysis of CT features of clinical stage IA lung adenocarcinoma
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VPI is associated with a high risk of recurrence after 
sublobectomy [39, 40], it is essential to avoid misdiag-
nosing lung cancer with VPI. Moreover, in cases where 
patients have low pulmonary function or high surgical 
risk, the decision to opt for lobectomy should be made 
cautiously, especially when the tumor’s location allows 
for sublobectomy [41]. Therefore, accurately determining 
the presence of VPI is of great importance. Intraopera-
tive frozen pathology for accurately diagnosing VPI sta-
tus requires comprehensive histological sampling of the 
tumor and its adjacent pleura. However, this approach 
may extend the operation time and lead to unnecessary 
complications [40]. In this study, we developed a com-
bined prediction model based on the GPTV10 radiomics 
model and traditional CT signs. In the external valida-
tion set, the combined model achieved an AUC value of 
0.876, an accuracy of 86.42%, a sensitivity of 72.73%, and 
a high specificity of 95.83%. Furthermore, we constructed 
a nomogram that provides a visual representation of the 

intricate regression equation inherent in the combined 
model. The nomogram can streamline patient assessment 
and furnish thoracic surgeons with valuable insights for 
selecting the optimal surgical strategy.

The clinical model constructed in this study included 
five CT features: solid component size, solid attachment 
sign, pleural indentation sign, vascular convergence sign, 
and the presence of emphysema. The presence of a solid 
component is often indicative of the more aggressive 
nature of lung adenocarcinoma, serving as a criterion 
for T staging in clinical stage IA lung cancer [42]. Larger 
solid components correlate positively with tumor aggres-
siveness. Additionally, when a solid component is in con-
tact with the pleura, the risk of visceral pleural invasion 
increases. As tumor malignancy increases, fibrous hyper-
plasia occurs within the tumor, leading to more signifi-
cant traction on adjacent tissues. This traction results in 
morphological changes in nearby bronchi, vessels, and 
pleura, which manifest as air bronchogram signs, vas-
cular convergence signs, and pleural indentation signs 
on CT images [43, 44]. Previous research has confirmed 
that LUAD accompanied by emphysema exhibits more 
aggressive characteristics and lower disease-free sur-
vival rates compared to cases without emphysema [45, 
46] Consistently, our study indicated that LUAD with 
emphysema is more prone to invade the visceral pleura 
[47]. The solid component size reflects the invasiveness 
of the tumor itself, while the other features reflect the 
relationship between the tumor and the adjacent pleura, 
vessels, and pulmonary background. The clinical model, 
which incorporates both tumor and peritumoral CT fea-
tures, provides a more comprehensive assessment than 
previous studies [16]. It exhibited promising predictive 
performance with AUC values of 0.885, 0.814, and 0.838 
in the three respective sets.

In this study, precise GTV segmentation formed the 
basis for automatically expanding three different gradient 
ranges of the peritumoral region, thereby obtaining the 
integrated 3D segmentation of GPTV. This exploration 
marked the first attempt to identify the most efficient 
radiomics model for predicting VPI status in early LUAD, 
with a multi-center research providing an evaluation of 
the model’s generalizability. Emphasizing both the rela-
tionship between the tumor and adjacent visceral pleura 

Table 2 Univariate and multivariate logistic regression analysis 
of the CT features in the training set

Univariate Logistic 
Regression

Multivariate Logis-
tic Regression

OR (95% CI) P value OR (95% 
CI)

P 
value

Tumor size 1.17 (1.11–1.23) < 0.001
Solid component 
size

1.25 (1.19–1.31) < 0.001 1.23 
(1.16–1.30)

< 0.001

CTR 1.05 (1.04–1.06) < 0.001
Pleural contact 
length

1.04 (1.01–1.07) 0.005

Solid pleural 
contact length

1.14 (1.09–1.19) < 0.001

Density type 7.06 (3.63–13.74) < 0.001
Pleural 
indentation

3.64 (2.11–6.30) < 0.001 3.36 
(1.61–7.02)

0.001

Solid attachment 2.71 (1.68–4.39) < 0.001 2.98 
(1.56–5.70)

< 0.001

Spiculation 8.23 (4.24–15.98) < 0.001
Air bronchogram 1.57 (0.98–2.52) 0.059
Vascular 
convergence

8.67 (3.26–23.05) < 0.001 4.51 
(1.49–13.69)

0.008

Combined with 
emphysema

7.07 (2.02–24.71) 0.002 2.92 
(0.68–12.63)

0.151

Note CTR, consolidation-to-tumor ratio; OR, odds ratio; CI, confidence interval

CT features Training set (n = 283) Internal validation set (n = 121) External validation set (n = 81)
VPI-
Negative ( 
n = 149)

VPI-Positive 
(n = 134)

P-value VPI-Nega-
tive
(n = 61)

VPI-Positive
(n = 60)

P-value VPI-
Negative(n = 48)

VPI-Positive
(n = 33)

P-
value

 No 146 (98.0%) 117 (87.3%) 57 (93.4%) 54 (90.0%) 46 (95.8%) 25 (75.8%)
 Yes 3 (2.0%) 17 (12.7%) 4 (6.6%) 6 (10.0%) 2 (4.2%) 8 (24.2%)
Note a: Pearson’s chi-squared test. b: Yate’s correction for continuity. c: Fisher’s exact test

VPI, visceral pleural invasion; CTR, consolidation-to-tumor ratio; DLP, minimum distance between lesion and pleura

Table 1 (continued) 
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and the tumor’s inherent aggressiveness, the peritumoral 
region was not solely utilized as VOI for model con-
struction. The results demonstrated that the predictive 
efficacy of all GPTV radiomics models was superior to 
that of GTV, underscoring the peritumoral region’s abil-
ity to represent the tumor microenvironment and reflect 
tumor aggressiveness to a certain extent, as noted in pre-
vious studies [17, 23–26, 48]. In addition, the GPTV10-
radiomics model exhibited superior performance 

compared to other models, likely due to the inclusion of 
tumors with a DLP ranging from 0 mm to 10 mm, where 
the 10  mm peritumoral extension range accurately cov-
ered various high-order features representing the three-
dimensional spatial structure relationship between the 
tumor and pleura.

Building upon the GPTV10 VOI, seven optimal quan-
titative radiomics features were selected to indirectly 
reflect the biological differences between VPI-positive 

Table 3 Prediction performance of GTV, GPTV5, GPTV10, and GPTV15 radiomics models in three sets
Radiomics
model

Set AUC (95%CI) Cut-off Accuracy (%) Sensitivity
(%)

Specificity
(%)

GTV Training 0.838 (0.790–0.879) -0.154 77.39 78.36 76.51
Internal validation 0.808 (0.726–0.874) 74.38 63.33 85.25
External validation 0.809 (0.706–0.888) 82.72 60.61 97.92

GPTV5 Training 0.849 (0.801–0.888) -0.338 76.33 88.06 65.77
Internal validation 0.855 (0.779–0.912) 77.69 68.33 86.89
External validation 0.826 (0.726–0.902) 82.72 63.64 95.83

GPTV10 Training 0.855 (0.808–0.894) -0.204 76.33 78.36 74.50
Internal validation 0.842 (0.764–0.902) 77.69 63.33 91.80
External validation 0.842 (0.744–0.913) 82.72 60.61 97.92

GPTV15 Training 0.841 (0.794–0.882) 0.193 75.97 64.18 86.58
Internal validation 0.824 (0.744–0.887) 76.86 66.67 86.89
External validation 0.823 (0.723–0.899) 82.72 63.64 95.83

Note AUC, area under curve; CI, confidence interval

Fig. 4 Retained radiomics features and corresponding coefficients of different models after dimensionality reduction by LASSO regression analysis (A) 
GTV model, (B) GPTV5 model, (C) GPTV10 model, (D) GPTV15 model
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Table 4 Prediction performance of clinical model, GPTV10-radiomics model and combined model in three sets
Model Set Cut-off AUC (95%CI) Accuracy

(%)
Sensitivity
(%)

Specificity
(%)

Clinical model Training 0.010 0.885 (0.842–0.920) 81.98 79.85 83.89
Internal validation 0.814 (0.733–0.879) 76.03 80.00 72.13
External validation 0.838 (0.739–0.910) 81.48 72.73 87.50

GPTV10-Radiomics Training -0.204 0.855 (0.808–0.894) 76.33 78.36 74.50
Internal validation 0.842 (0.764–0.902) 77.69 63.66 91.80
External validation 0.842 (0.744–0.913) 82.72 60.61 97.92

Combined model Training 0.394 0.894 (0.852–0.927) 82.69 74.63 89.93
Internal validation 0.828 (0.749–0.891) 75.21 65.00 85.25
External validation 0.876 (0.784–0.939) 86.42 72.73 95.83

Fig. 6 An example of the nomogram in clinical application. This was an axial non-enhanced chest CT image of a 64-year-old male patient with a solid 
nodule in the upper lobe of the right lung (white arrow) with invasive LUAD and VPI-positive. The factors in the nomogram were analyzed as follows: 
combined with emphysema = “Yes”, vascular convergence = “Yes”, pleural indentation = “No”, solid component size = 21.1 mm, solid attachment = ”Yes”, 
GPTV10-Radscore = 0.267, total score was 356 and the probability of VPI-positive was 0.911

 

Fig. 5 The developed nomogram based on GPTV10-Radscore and CT morphological features for predicting VPI status in clinical stage IA LUAD patients
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and VPI-negative patients. These features included Large 
Dependence Low Gray Level Emphasis (LDLGLE), Zone 
Entropy, Gray Level Variance, Cluster Tendency, and 
Correlation. LDLGLE, Zone Entropy, and Gray Level 
Variance are parameters of the Gray Level Size Zone 
Matrix (GLSZM), while Cluster Tendency and Correla-
tion are parameters of the Gray Level Co-occurrence 
Matrix (GLCM), all of which are texture feature param-
eters [49]. It is well-established that GLCM reflects the 
spatial relationship between pixels, GLDM reflects the 
gray level relationship between the center pixel and its 
neighborhood, and GLSZM provides information about 

the uniformity of each gray level on a three-dimensional 
image [17]. The higher values of LDLGLE, regional 
entropy, gray variance, cluster trend, and correlation 
indicated a more uneven distribution of image texture 
and more irregular gray changes, signifying higher spatial 
heterogeneity of the tumor [18], and reflecting its strong 
invasiveness and increased risk of adjacent VPI.

The clinical model and radiomics model were found 
to be complementary in this study. Although their diag-
nostic performance was comparable, their integration 
exhibited superior diagnostic efficiency. The Delong test 
results indicated that the combined model outperformed 

Fig. 9 DCA for the nomogram, radiomics model, and clinical model in three sets. The y-axis represents the net benefit, and the x-axis represents the 
threshold probability. (A) training set, (B) internal validation set, (C) external validation set

 

Fig. 8 The calibration curves of the combined model in three sets (A) training set, (B) internal validation set, (C) external validation set

 

Fig. 7 ROC curves of GPTV10 radiomics model, clinical model and combined model in three sets (A) training set, (B) internal validation set, (C) external 
validation set
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the GPTV10 radiomics model in the training set (P < 0.05) 
and the clinical model in the external validation set 
(P < 0.05). The calibration curve demonstrated the mod-
el’s predicted probabilities to be in acceptable agreement 
with the actual probability, while the DCA illustrated 
that the combined model provided more net benefit than 
both the clinical model and the radiomics model.

There were several previous studies on predicting VPI 
status in lung adenocarcinoma by CT-based radiomics 
features [27–32]. Compared with previous studies, our 
study has some innovative points in patient enrollment 
and research methods. Firstly, lung tumors with specific 
VPI-negative on CT presentation such as pGGN or unre-
lated to the pleura were excluded in our study, therefore, 
our results were more objective in including cases with 
potential VPI-positive status to study the predictive per-
formance of radiomics model combined with CT fea-
tures. Secondly, our study explored the value of radiomics 
models based on GTV and GPTV with different peritu-
moral areas for predicting VPI status, no similar research 
has been reported before. Thirdly, based on the TRIPOD 
statement, different prediction models were established, 
and a multi-center dataset was included for internal and 
external validation of the model to verify the generaliza-
tion of the models, which was lacking in previous studies.

While this study has notable strengths, it is not devoid 
of limitations. Firstly, the manual delineation of tumor 
segmentation was both time-consuming and labor-
intensive; however, this method yielded a high level of 
segmentation accuracy. Moreover, the utilization of 
Python platform editing code for automatic peritumoral 
area acquisition, based on semi-automatic and manually 
precise tumor segmentation, significantly improved seg-
mentation efficiency. The approach included the imple-
mentation of a threshold value to eliminate non-lung 
parenchyma areas, such as soft tissue of the chest wall, 
ribs, neck, mediastinum, and abdominal regions. This not 
only preserved the accuracy of artificial tumor delinea-
tion but also mitigated subjective errors in the manual 
delineation of the peritumoral area. Secondly, the sample 
size in this study was relatively small. Thirdly, the retro-
spective nature of the study inevitably resulted in selec-
tion bias. Additionally, some cases lacked clear PL1 and 
PL2 pathological grades, precluding the possibility of 
conducting subgroup analyses for these categories. Fur-
ther studies are warranted in the future, with a focus on 
collecting a larger number of cases and more detailed 
information on pathological grading to address these 
limitations.

Conclusions
In conclusion, radiomics features-based quantitative 
analysis provides a noninvasive and accurate diagnos-
tic tool for reflecting the biological behavior of tumors. 

Combining radiomics features based on segmented 
GTPV10 with traditional CT morphological signs recog-
nized by radiologists maximizes the diagnostic efficacy 
for preoperative prediction of VPI in clinical stage IA 
LUAD, thereby contributing to personalized and accurate 
treatment strategies.
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