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Abstract 

Background Arteriosclerosis obliterans (ASO) is a chronic arterial disease that can lead to critical limb ischemia. 
Endovascular therapy is increasingly used for limb salvage in ASO patients, but the outcomes vary. The development 
of prediction models using unsupervised machine learning may lead to the identification of novel subtypes to guide 
patient prognosis and treatment.

Methods This retrospective study analyzed clinical data from 448 patients with ASOs who underwent endovascular 
therapy. Unsupervised machine learning algorithms were employed to identify subgroups. To validate the precision 
of the clustering outcomes, an analysis of the postoperative results of the clusters was conducted. A prediction model 
was constructed using binary logistic regression.

Results Two distinct subgroups were identified by unsupervised machine learning and characterized by differ-
ing patterns of clinical features. Patients in Cluster 2 had significantly worse conditions and prognoses than those 
in Cluster 1. For the novel ASO subtypes, a nomogram was developed using six predictive factors, namely, platelet 
count, ankle brachial index, Rutherford category, operation method, hypertension, and diabetes status. The nomo-
gram achieved excellent discrimination for predicting membership in the two identified clusters, with an area 
under the curve of 0.96 and 0.95 in training cohort and internal test cohort.

Conclusion This study demonstrated that unsupervised machine learning can reveal novel phenotypic subgroups 
of patients with varying prognostic risk who underwent endovascular therapy. The prediction model developed could 
support clinical decision-making and risk counseling for this complex patient population. Further external validation 
is warranted to assess the generalizability of the findings.
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Background
Peripheral Arterial Disease (PAD) is a prevalent circu-
latory condition marked by narrowed arteries, which 
impede blood flow to the limbs [1]. Arteriosclerosis 
Obliterans (ASO) constitutes a significant subset of PAD, 
representing the chronic advancement of arteriosclerotic 
disease. Patients with ASO typically present with symp-
toms ranging from intermittent claudication to more 
severe manifestations such as rest pain and tissue loss, 
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reflecting varying stages of disease severity [2]. Endovas-
cular therapy has emerged as a promising approach for 
treating ASO patients, offering a less invasive alternative 
to traditional surgical procedures. However, significant 
variability exists in patient responses to this therapy, and 
accurately predicting outcomes remains challenging [3].

In recent years, advances in unsupervised machine 
learning (UMLA) techniques have opened new ave-
nues for understanding the heterogeneity within ASO 
patients. These techniques facilitate the automatic clus-
tering of patients into distinct subtypes based on diverse 
clinical and omics data [4]. This study aimed to evaluate 
the power of the UMLA to construct a prediction model 
that can identify novel subtypes within the ASO patient 
population undergoing endovascular therapy.

In this study, clinical data from ASO patients who 
underwent endovascular therapy were collected. Using 
UMLA, patient clustering into distinct groups based 
on their clinical characteristics was performed. Sub-
sequently, a comparative analysis of surgical outcomes 
and postoperative complications between the identified 
patient groups was carried out to validate the accuracy 
of clustering. Finally, we examined the potential risk fac-
tors contributing to patient clustering with the aim of 
constructing a novel prediction model for ASO subtypes. 
This prediction model has the potential to guide clini-
cians in identifying patients at risk for poor outcomes, 
facilitating timely intervention and tailored therapeutic 
approaches.

Methods
Patients
This study is a single-center retrospective study. Clini-
cal data were collected from patients diagnosed with 
ASO who underwent endovascular treatment for lower 
extremity conditions at Guangxi Medical University 
between January 2015 and January 2023. The inclusion 
criteria for patients were as follows: had (a) met the estab-
lished diagnostic criteria for ASO in the lower limbs [5], 
(b) had undergone endovascular treatment for the lower 
extremities, (c) received ultrasound, computed tomog-
raphy angiography (CTA), or digital subtraction angiog-
raphy (DSA) to assess lower extremity artery occlusion, 
and (d) had complete clinical data available. The exclu-
sion criteria included (a) loss to follow-up and (b) the 
presence of a malignant tumor. Based on the inclusion 
and exclusion criteria, a total of 448 eligible patients were 
included in the study.

We collected 18 preoperative variables and 10 postop-
erative variables. The 18 preoperative variables included 
sex, age, body mass index (BMI), total cholesterol (TC), 
triglyceride (TG), low-density lipoprotein cholesterol 
(LDL-C), platelet count, ankle brachial index (ABI) [6], 

Rutherford category [7], TransAtlantic Inter-Society 
Consensus (TASC) II classification [8], operative method, 
operation time and history of smoking, hypertension, 
diabetes, cardiovascular heart disease (CAD), cer-
ebrovascular disease (CVD) and chronic kidney disease 
(CKD). The 10 postoperative variables were the degree 
of claudication and tissue loss, ischemic rest pain, mul-
tiple organ dysfunction syndrome (MODS), renal failure, 
wound infection, wound ulceration, amputation, death in 
hospital, and septicemia. All the postoperative outcomes 
were assessed during the 30-day follow-up.

This study was conducted in accordance with the 
Declaration of Helsinki and was approved by the Ethics 
Committee of The First Affiliated Hospital of Guangxi 
Medical University.

Clustering clinical data using UMLA
K-means clustering algorithm was used to cluster the 
ASO patients. K-means clustering is a widely used unsu-
pervised learning method for discovering distinct group-
ings in data by minimizing within-cluster variation. The 
algorithm steps are as follows: (a) randomly initialize k 
cluster centroids; (b) assign each data point to the near-
est cluster; (c) recompute cluster centroids based on 
assigned points; and (d) repeat steps 2–3 until the cen-
troids no longer change or the maximum number of 
iterations is reached [9]. Figure  1A shows the K-means 
algorithm flow. R software version 4.2.1 employed the 
scale function from the ‘factoextra’ package to standard-
ize the preoperative variables of ASO patients [10]. The 
optimal number of clusters (K-value) was determined 
using the ‘fpc’ package, which calculated the silhouette 
coefficient (SC). The silhouette coefficient is a metric 
utilized to assess the clustering performance of an unsu-
pervised learning model, measuring the degree to which 
each data point fits into its assigned cluster [11].

Where SC (i) denotes a calculated score that evalu-
ates the quality of the cluster. For each data point i , a 
(i) constitutes the average distance from i to all other 
points within its cluster, while b (i) represents the mini-
mum average distance i of to points in any different 
cluster. The overall SC of the model is determined by 
averaging the silhouette scores of all data points. Scores 
approaching + 1 suggest dense, well-separated clusters; 
scores around 0 imply overlapping clusters; and nega-
tive scores may signify incorrect assignment of points 
to clusters. In essence, SC serves as a quantitative 
measure for assessing the suitability of data clustering 
by a specific model and is instrumental in evaluating 

SC(i) =
b(i)− a(i)

max a(i), b(i)
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and refining the configuration of unsupervised learning 
clustering algorithms [12].

Based on the preoperative data, patients were divided 
into two clusters according to the UMLA, after which 
the differences in the postoperative data between the 
two clusters were analyzed to verify the accuracy of the 
UMLA clustering.

Construction of the prediction model
The dataset was randomly divided into training and 
validation cohorts at a ratio of 7:3, and the variables 
were compared. In the training cohort, the least abso-
lute shrinkage and selection operator (LASSO) logistic 
regression analysis was used for multivariate analysis to 
screen the independent risk factors. The training data-
set was then utilized to develop a multivariate logistic 
regression model. The coefficients from this model were 
employed to construct the nomogram. The nomogram 
mapped the logistic regression coefficients to a 0–100 
scale to provide a visual representation of the predicted 
probabilities [13]. The performance of the nomogram 
was assessed using the receiver operating characteristic 
(ROC) curve and calibration curve, with the area under 
the ROC curve (AUC) ranging from 0.5 (no discrimi-
nant) to 1 (complete discriminant). Additionally, a deci-
sion curve analysis (DCA) was conducted to establish the 
net benefit threshold for prediction.

Statistical analysis
IBM SPSS 26.0 and R 4.2.1 software were used for sta-
tistical analysis. Clinical data are presented as the mean 
(SD) and median (P25, P75). Depending on the data type, 
Student’s t-test, the Mann–Whitney U test, or the chi-
square test was performed. A p-value < 0.05 was consid-
ered to indicate statistical significance.

Results
Results of UMLA
Figure 1B displays the optimal clustering number deter-
mined by the K-means algorithm, with the peak of the 
curve indicating the best value for the SC (Y-axis) [14]. 
This suggests that two is the optimal number of clus-
ters. Consequently, the algorithm effectively clustered 
the current clinical data into two clusters (Fig.  1C). 
Table  1 presents the K-means clustering results for the 
clinical data. The sex distribution was significantly dif-
ferent between the two clusters (p = 0.002), with cluster 
2 having a greater proportion of males (71%) than clus-
ter 1 (56%). Age, body mass index (BMI), total cholesterol 
(TC), platelet count, low-density lipoprotein cholesterol 
(LDL-C), Rutherford category, smoking status, hyperten-
sion, and diabetes incidence were significantly greater in 
cluster 2 than in cluster 1 (p < 0.05). The ankle brachial 
index (ABI) in cluster 2 was significantly lower than that 
in cluster 1 (p < 0.001). According to the TransAtlan-
tic Inter-Society Consensus (TASC) II classification, a 

Fig. 1 Result of unsupervised machine learning. A Optimal clustering number of the K-means clustering algorithm was determined by Silhouette 
coefficient (SC). The peak of the curve is the best value for the Silhouette coefficient (Y-axis); the best number of clusters was equal to 2 (X–axis). B 
Scatter plots of patients’ clinical data. Scatter points on the graph represent each patient. The K-means algorithm divides patients into two clusters. 
The red scatter represents cluster 1 and the blue scatter represents cluster 2
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greater proportion of patients with type C and D lesions 
was observed in cluster 2, while type A and B lesions 
were more prevalent in cluster 1 (p < 0.001). Furthermore, 
significant differences existed between the two clusters 
in terms of the operation method and duration. No sig-
nificant differences were noted in the other preoperative 
variables. Figure 2A displays the radargram of the preop-
erative variables.

Comparison of postoperative variables between the two 
clusters
Table  2 illustrates the differences in postoperative vari-
ables between the two clusters. Cluster 2 exhibited 
a greater incidence of renal failure than did cluster 2 
(p = 0.036). Furthermore, the incidence of wound infec-
tion, ulceration, and amputation in cluster 2 was sig-
nificantly greater than that in cluster 1 (p < 0.001). 
Additionally, claudication, ischemic rest pain, and tis-
sue loss were more severe in cluster 2 than in cluster 1 
(p < 0.001). These results indicated worse prognoses 
and outcomes for patients in cluster 2 than for those in 
cluster 1 (Fig. 2B). The differences in postoperative vari-
ables between the two clusters confirmed the accuracy of 
UMLA clustering in this study. Hence, UMLA success-
fully stratified ASO patients into severe and mild cohorts 
based on the acquired clinical data.

Construction of a prediction model for the novel ASO 
subtype
This study examined the clinical data of 448 ASOs, 
divided into a Training Cohort comprising 314 indi-
viduals and an Internal Test Cohort with 134 partici-
pants. Supplementary Table  1 displays the baseline 

Table 1 Preoperative conditions of the study patients by clusters

Characteristic cluster p-value

1, N = 243 2, N = 205

Age 0.001

 Mean ± SD 58 ± 12 61 ± 12

 Median (IQR) 56 (49, 68) 62 (52, 70)

BMI 0.007

 Mean ± SD 22.5 ± 3.8 23.1 ± 3.3

 Median (IQR) 22.0 (20.0, 24.6) 23.1 (20.5, 25.5)

TC 0.002

 Mean ± SD 7.5 ± 3.6 8.7 ± 4.3

 Median (IQR) 6.7 (5.1, 9.1) 7.5 (5.9, 10.3)

Platelet 0.009

 Mean ± SD 210 ± 79 247 ± 123

 Median (IQR) 209 (154, 257) 227 (165, 285)

LDL-C 0.009

 Mean ± SD 5.40 ± 2.67 6.48 ± 3.77

 Median (IQR) 4.74 (3.60, 7.17) 5.79 (3.62, 8.48)

TG 0.618

 Mean ± SD 1.55 ± 0.66 1.50 ± 0.62

 Median (IQR) 1.56 (1.06, 1.89) 1.51 (1.06, 1.89)

ABI < 0.001

 Mean ± SD 0.64 ± 0.13 0.39 ± 0.15

 Median (IQR) 0.67 (0.55, 0.74) 0.38 (0.29, 0.46)

Rutherford category < 0.001

 Mean ± SD 2.35 ± 0.76 4.58 ± 1.29

 Median (IQR) 2.00 (2.00, 2.00) 5.00 (4.00, 6.00)

Gender 0.002

 Female 106 (44%) 60 (29%)

 Male 137 (56%) 145 (71%)

Smoking < 0.001

 No 102 (42%) 55 (27%)

 Yes 141 (58%) 150 (73%)

Hypertension < 0.001

 No 178 (73%) 106 (52%)

 Yes 65 (27%) 99 (48%)

Diabetes 0.007

 No 196 (81%) 143 (70%)

 Yes 47 (19%) 62 (30%)

CAD 0.478

 No 226 (93%) 194 (95%)

 Yes 17 (7%) 11 (5%)

CVD 0.348

 No 226 (93%) 195 (95%)

 Yes 17 (7%) 10 (5%)

CKD 0.802

 No 220 (91%) 187 (91%)

 Yes 23 (9%) 18 (9%)

TASC II < 0.001

 A 121 (50%) 4 (2%)

 B 107 (44%) 14 (7%)

ABI Ankle brachial index, BMI Body mass index, CAD Coronary artery disease, 
CVD Cerebrovascular disease, CKD Chronic kidney disease, LDL-C Low-density 
lipoprotein cholesterol, PTA Percutaneous transluminal angioplasty, TASC II 
TransAtlantic Inter-Society Consensus II, TC Total cholesterol, TG triglyceride

Table 1 (continued)

Characteristic cluster p-value

1, N = 243 2, N = 205

 C 15 (6%) 117 (57%)

 D 0 (0%) 70 (34%)

Operative method < 0.001

 PTA 38 (16%) 109 (53%)

 Atherectomy + PTA 124 (51%) 41 (20%)

 Atherec-
tomy + PTA + Stent

81 (33%) 55 (27%)

Operation time < 0.001

  < 2h 76 (31%) 52 (25%)

 2 ~ 4h 124 (51%) 78 (38%)

  > 4h 43 (18%) 75 (37%)
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Fig. 2 Radargram of LE-PAD patients’ preoperative and postoperative variables in two clusters. A Radargram of LE-PAD patients’ preoperative 
variables in two clusters. B Radargram of LE-PAD patients’ postoperative variables in two clusters. ABI: Ankle brachial index; BMI: Body mass 
index; CAD: Coronary artery disease; CVD:Cerebrovascular disease; CKD: Chronic kidney disease; LDL-C: Low-density lipoprotein cholesterol; 
MODS: multiple organ dysfunction syndrome; PTA: Percutaneous transluminal angioplasty; TASC II: Inter-society consensus for the management 
of peripheral arterial disease; TC: Total cholesterol; TG: triglyceride
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demographic and clinical features of the respective 
cohorts. Next, the candidate predictors were included in 
the original model, which were then reduced to 6 poten-
tial predictors using LASSO regression analysis per-
formed in the training cohort. The cross-validation plot 
of the LASSO regression model is plotted in the Fig. 3A. 
A coefficient path plot is also shown in the Fig. 3B. The 
most regularized and parsimonious model, with a cross-
validated error within one standard error of the mini-
mum, included six variables. As shown in Fig.  3C, the 
ROC analysis of the abovementioned variables yielded 
AUC values greater than 0.5. Further multivariate logistic 

analyses were carried out in different clusters. Results are 
shown in the Table  3. The final logistic model included 
6 independent predictors (hypertension, diabetes, plate-
let, ABI, rutherford classification, and operation method) 
and was developed as a simple-to-use nomogram, which 
is illustrated in the Fig. 3D. The AUCs of the model in the 
different cohorts were 0.96 and 0.95 (Fig. 4A). The cali-
bration plots of the nomogram in the different cohorts 
are plotted in the Fig. 4 B-C, which demonstrate a good 
correlation between the observed and predicted cluster. 
The results showed that the original nomogram was still 
valid for use in the validation sets, and the calibration 
curve of this model was relatively close to the ideal curve, 
which indicates that the predicted results were consistent 
with the actual findings. Figure  4D-E display the DCA 
curves related to the nomogram. A high-risk threshold 
probability indicates the chance of significant discrepan-
cies in the model’s prediction when clinicians encounter 
major flaws while utilizing the nomogram for diagnostic 
and decision-making purposes. This research shows that 
the nomogram offers substantial net benefits for clinical 
application through its DCA curve.

Discussion
Clinical significance of UMLA modeling of the novel ASO 
subtype
With the advancement of artificial intelligence (AI), 
UMLA has found extensive application in clinical 
research. For instance, Eshaghi et  al. employed UMLA 
to categorize multiple sclerosis patients into pathology-
based subtypes utilizing magnetic resonance imaging 
[15]. Kung et  al. identified depression subtypes using 
UMLA on symptom data from more than 18,000 patients 
[16]. These studies demonstrated the potential of using 
UMLA to discover novel subtypes and construct predic-
tion models. Establishing accurate subtyping and risk 
prediction enables precision medicine approaches for 
these complex, heterogeneous diseases.

Compared to supervised machine learning and tra-
ditional predictive modeling approaches, UMLA excels 
in uncovering hidden patterns and structures within 
the data without prior labeling [17]. This is particularly 
advantageous in medical research where the complexity 
and variability of clinical data often mask underlying pat-
terns that could be crucial for patient stratification and 
outcome prediction. By leveraging UMLA, we identified 
distinct subtypes of ASO patients that might not have 
been evident through traditional methods.

Additionally, unlike supervised machine learning, 
UMLA groups patients based on inherent similarities in 
their clinical features. This data-driven approach enables 
the identification of patient subgroups that share com-
mon characteristics and potentially similar prognostic 

Table 2 Postoperative conditions of patients in two clusters

MODS multiple organ dysfunction syndrome

Characteristic cluster p-value

1, N = 243 2, N = 205

Claudication  < 0.001

 Asymptomatic 222 (91%) 114 (56%)

 Mild 12 (5%) 55 (27%)

 Moderate 6 (2%) 26 (13%)

 Severe 3 (1%) 10 (5%)

Ischemic rest pain  < 0.001

 No 234 (96%) 158 (77%)

 Yes 9 (4%) 47 (23%)

Tissue loss  < 0.001

 No 231 (95%) 152 (74%)

 Minor 7 (3%) 43 (21%)

 Major 5 (2%) 10 (5%)

MODS 0.825

 No 235 (97%) 199 (97%)

 Yes 8 (3%) 6 (3%)

Renal failure 0.036

 No 238 (98%) 193 (94%)

 Yes 5 (2%) 12 (6%)

Infection  < 0.001

 No 237 (98%) 166 (81%)

 Yes 6 (2%) 39 (19%)

Ulceration  < 0.001

 No 241 (99%) 171 (83%)

 Yes 2 (1%) 34 (17%)

Amputation  < 0.001

 No 226 (93%) 157 (77%)

 Yes 17 (7%) 48 (23%)

Death 0.077

 No 236 (97%) 192 (94%)

 Yes 7 (3%) 13 (6%)

Septicopyemia 0.592

 No 235 (97%) 200 (98%)

 Yes 8 (3%) 5 (2%)
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trajectories [18]. Such stratification is essential for per-
sonalized medicine, allowing for tailored treatment strat-
egies that could improve patient outcomes.

Furthermore, UMLA models are highly adaptable and 
can be applied to various types of data, including contin-
uous, categorical, and binary variables [19]. This flexibil-
ity is beneficial in the medical field where patient data is 
often heterogeneous. UMLA can be continuously refined 
and updated as new data becomes available, ensuring 
that the predictive models remain relevant and accurate 
over time.

In the current study, UMLA categorized 18 predictor 
variables derived from the information of ASO patients 
into two distinct clusters: cluster 1 and cluster 2. Further 
analysis of postoperative variables in these two clusters 
revealed significantly worse conditions and prognoses 
for patients in the cluster 2 cohort. This subtyping system 
provides preliminary evidence that ASOs may represent 
multiple biological entities with varying prognostic risks.

The nomogram created in this study may have clinical 
utility for individual risk stratification. By incorporating 

Fig. 3 Construction of the predictive model. A Cross-validation plot of the LASSO regression model. B Coefficient path plot of the LASSO regression 
model. C ROC curve analysis of the six candidate diagnostic indicators. D Nomogram for prediction model. ABI: Ankle brachial index; AUC: Area 
under the curve; PTA: Percutaneous transluminal angioplasty

Table 3 Results of Multivariate Logistic regression for Training 
Cohort

ABI Ankle brachial index, PTA Percutaneous transluminal angioplasty

Characteristic N Event N OR1 95%  CI1 p-value

Hypertension
 No 208 72 — —

 Yes 106 68 4.02 1.68, 9.61 0.002

Diabetes
 No 239 92 — —

 Yes 75 48 4.42 1.56, 12.50 0.005

Platelet 314 140 1.01 1.00, 1.01 0.010

ABI 314 140 0.01 0.00, 0.15 0.002

Rutherford classification 314 140 3.80 2.43, 5.94 < 0.001

Operative method
 PTA 100 73 — —

 Atherectomy + PTA 121 33 0.19 0.07, 0.52 0.001

 Atherec-
tomy + PTA + Stent

93 34 0.39 0.12, 1.24 0.109
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Fig. 4 Validation of the predictive model of the predictive model. A ROC curves of the nomogram predictive model. B Calibration curve 
of the nomogram predictive mode for the training cohort. C Calibration curve of the nomogram prediction mode for the internal test cohort. D 
Decision curve analysis of the nomogram of the training cohort. E Decision curve analysis of the nomogram of the internal test cohort. AUC: Area 
under the curve
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a set of clinical variables, the nomogram demonstrated 
outstanding discrimination in predicting member-
ship in the two identified clusters, achieving an AUCs 
of 0.96 and 0.95 in training cohort and internal test 
cohort. If validated, this model could be utilized to cus-
tomize treatment strategies based on the anticipated 
disease trajectory. Patients at high risk might benefit 
from more intensive follow-up and monitoring, whereas 
low-risk patients could potentially avoid unnecessary 
interventions.

Several limitations should be noted. However, our 
model requires external validation in diverse patient 
cohorts before clinical implementation. Additionally, The 
k-means clustering results reveal a relatively low silhou-
ette coefficient, albeit still within an acceptable range. 
This finding suggests that the severity of ASO among 
patients likely exists along a spectrum rather than dis-
crete clusters. Future studies could benefit from incorpo-
rating additional variables, including genetic, biomarker, 
and imaging data, to enhance clustering performance 
[20]. Nonetheless, this study offers a proof-of-concept for 
an AI-driven approach to unraveling heterogeneity and 
facilitating personalized medicine in ASO patients. With 
additional validation and fine-tuning, machine learning 
models could be integrated into clinical decision support 
systems to assist in tailoring individualized treatments. In 
summary, advanced analytics hold significant potential 
for discovering new insights into the disease and enhanc-
ing outcomes for this intricate vascular disorder.

Analysis of risk factors for poor prognosis 
after endovascular therapy in patients with ASO
In this study, hypertension, diabetes status, high platelet 
count, low ABI and advanced Rutherford category were 
identified as independent risk factors for poor prognosis 
after endovascular therapy in patients who underwent 
ASO. On the contrary, the combination of atherectomy 
and percutaneous transluminal angioplasty was observed 
to have a protective effect against adverse outcomes.

Abnormal glucose metabolism has been recognized as 
a substantial risk factor for the progression of atheroscle-
rosis [21]. Dysregulated blood glucose can disrupt auto-
nomic function, elevate oxidative stress, inflict damage 
on the vascular endothelium, and foster the formation of 
atherosclerotic plaques. Among individuals with diabetes 
and concurrent ASO, there is a tendency for the involve-
ment of the femoral profunda and infrapatellar arteries 
in both lower extremities. These affected vessels tend to 
be small in caliber with extensive branching, predispos-
ing diabetic ASO patients to high rates of restenosis and 
reocclusion after surgical revascularization [22].

Platelets, which are anuclear cells involved in inflam-
mation, play a significant role in the development and 

complications of atherosclerosis. Upon activation, these 
cells release a variety of chemokines, promoting local-
ized inflammation at vascular injury sites. This process 
results in pathogenic intimal thickening and contrib-
utes to vascular obstruction [23]. Additionally, endo-
vascular procedures may trigger thrombus formation. 
Platelets perceive artificial grafts as foreign entities and 
undergo activation upon contact with the graft surface. 
This activation can lead to early postoperative vascular 
obstruction, particularly when grafts are placed distally 
to the popliteal artery. Consequently, long-term anti-
platelet therapy is often advised for patients receiving 
artificial vascular grafts [24].

Our study suggests that atherectomy + PTA is a 
protective factor for poor prognosis in ASO patients 
undergoing endovascular therapy. Atherectomy entails 
the physical removal of atherosclerotic plaque from the 
arterial lumen, thereby reducing the overall plaque bur-
den. This debulking process promotes the creation of a 
larger and more uniform lumen, facilitating improved 
blood flow and lowering the risk of restenosis [25]. Fur-
thermore, atherectomy eliminates calcified and fibrotic 
plaques, enhancing the compliance of the treated ves-
sel segment. Consequently, this improves the efficacy of 
subsequent PTA by enabling better balloon expansion 
and more effective dilatation of the vessel. Addition-
ally, the combined use of atherectomy and PTA may 
induce a more favorable healing response by generating 
a smoother luminal surface, potentially reducing the 
likelihood of neointimal hyperplasia, a common cause 
of restenosis following angioplasty [26].

Regarding the necessity for stent placement, it is 
crucial to recognize that this decision often reflects 
the severity and complexity of peripheral vascular dis-
ease. Patients requiring stents typically present with 
advanced disease characterized by extensive and com-
plex lesions prone to elastic recoil or dissection fol-
lowing angioplasty [27]. This necessity underscores a 
challenging clinical scenario, inherently associated with 
a higher risk of adverse outcomes.

However, it is crucial to emphasize that the choice 
of surgical method for ASO patients should always be 
tailored to the specific conditions of the patient’s arter-
ies. The decision-making process must consider various 
factors, including the extent and location of the arte-
rial lesions, the overall health of the patient, and any 
comorbid conditions that may influence the outcome 
of the procedure [28]. Despite these considerations, the 
results of our study are promising. They indicate that 
atherectomy + PTA can be highly effective in managing 
ASO. Future research should focus on further refining 
patient selection criteria and exploring the long-term 
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benefits of this combined therapeutic approach to max-
imize patient outcomes.

In conclusion, a majority of patients with ASOs pos-
sess multiple risk factors, the cumulative effects of 
which can accelerate atherosclerotic processes. Our 
study demonstrated the potential of using the UMLA to 
identify novel subtypes and construct prediction mod-
els in ASO patients receiving endovascular therapy. The 
current prediction model has the potential to stratify 
ASO risk, facilitating personalized care through medi-
cations, lifestyle adjustments, vigilant monitoring, and 
timely interventions. Nonetheless, additional validation 
and enhancement of the model are necessary before its 
clinical implementation. In summary, the combination 
of machine learning with precision medicine represents 
a promising approach to enhance outcomes in patients 
undergoing endovascular therapy for ASO.

Conclusions
This study demonstrated that unsupervised machine 
learning can uncover novel phenotypic subgroups of 
ASO patients who are receiving endovascular therapy 
and who are at varying prognostic risk. The predic-
tion model developed could support clinical decision-
making and risk counseling for this complex patient 
population. Further external validation is warranted to 
assess the generalizability of the findings.
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