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Abstract

The myocardial infarction is the main cause of morbidity and mortality in cardiovascular diseases around the world.
Although the timely and complete reperfusion via Percutaneous Coronary Intervention (PCI) or thrombolysis have
distinctly decreased the mortality of myocardial infarction, reperfusion itself may lead to supererogatory irreversible
myocardial injury and heart function disorders, namely ischemia-reperfusion (I/R) injury. Extensive studies have
indicated that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and
circular RNAs (circRNAs), play important roles in the progress of myocardial I/R injury, which is closely correlative
with cardiomyocytes autophagy. Moreover, autophagy plays an important role in maintaining homeostasis and
protecting cells in the myocardial ischemia reperfusion and cardiomyocyte hypoxia-reoxygenation (H/R) progress. In
this review, we first introduced the biogenesis and functions of ncRNAs, and subsequently summarized the roles
and relevant molecular mechanisms of ncRNAs regulating autophagy in myocardial I/R injury. We hope that this
review in addition to develop a better understanding of the physiological and pathological roles of ncRNAs, can
also lay a foundation for the therapies of myocardial I/R injury, and even for other related cardiovascular diseases.
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Background
Although advances are made in all aspects of the cardio-
vascular disease (CVD), it remains one of the most dom-
inating causes of disability and death globally [1].
Relatively, it is reported that there will be almost 23.6
million people dying from CVD by 2030 [2, 3]. More
specifically, myocardial infarction (MI) is a primary com-
ponent in CVD, which can be treated with timely and
complete reperfusion with main percutaneous coronary
intervention (PCI) and thrombolysis in clinic [4, 5]. The
rapid recovery of ischemic myocardial blood flow can
prevent myocardial cell death, restrict infarct size, and
decrease disability and death, which prominently

improves the quality of life of patients with MI. None-
theless, reperfusion itself may contribute to supereroga-
tory irreversible myocardial injury and/or heart function
disorders, namely myocardial I/R injury [6]. Its detri-
mental effects can result in a series of adverseness and
damages such as re-infarction, malignant arrhythmias
and heart failure that threaten human health seriously
[7]. Currently, myocardial I/R injury is the crucial patho-
genesis of CVD that is implicated in several pathological
processes, including cell death programs of cardiomyo-
cytes (apoptosis, autophagy and necrosis), inflammation,
oxidative stress and mitochondrial dysfunction, contrib-
uting to the beginning and progression of myocardial I/
R injury [8].
Autophagy is an evolutionarily conserved and import-

ant progress in eukaryotes, which is responsible for the
turnover of intracellular substances. In this progress,
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some damaged proteins or organelles are encapsulated
by autophagic vesicles with double membrane structure,
then sent to lysosomes (animals) or vacuoles (yeasts and
plants) for degradation and recycling [9]. The level of
autophagy is involved in myocardial I/R injury and car-
diomyocyte H/R, which is required for the maintenance
of cardiomyocytes homeostasis and protection of cells
[10]. Autophagy can also be used as an effective physio-
logical adaptive cause of cell aging and anti I/R-related
arrhythmias [11]. Autophagy regulates myocardial I/R
injury with the safeguard of cell death at the ischemia
period and the inhibition of cell death at the reperfusion
period. The mammalian target of rapamycin (mTOR)
and Beclin-1 are associated with autophagy-associated
signaling pathways, in which mTOR promotes by adeno-
sine 5′-monophosphate (AMP)-activated protein kinase
(AMPK) and phosphoinositide 3 kinase (PI3K)/Akt sig-
naling pathway, and Beclin-1 is upregulated during re-
perfusion [12].
Tremendous research in the past decades have indi-

cated that ncRNAs play an essential role in both the car-
diogenesis [13] and cardiac disease, such as acute MI
[14, 15], heart failure [16] and hypertrophy [17]. Less
than 2% of the human genome contain coding se-
quences, whereas some of the remaining of genome are
transcribed as ncRNAs, including miRNAs, lncRNAs
and circRNAs [18]. MiRNAs are a type of single-
stranded ncRNAs with 18–24 nucleotides in length that
regulate gene expression through inhibition of mRNA
translation or degradation and suppression of gene
translation [19, 20]. LncRNAs are a group of ncRNAs
with 200–100,000 nucleotides in length that modulate
gene expression in a post-transcriptional, translational,
and epigenetic manner both in pathological and physio-
logical conditions [21, 22]. CircRNAs are a class of
ncRNAs with covalently end-to-end connection that
function as miRNA sponges, translation modulators, and
biomarkers in a wide range of biological processes [23,
24]. It is established that majority of ncRNAs are prom-
inently dysregulated in the heart, which demonstrated
that they implicate with the mechanism and therapy of
myocardial I/R injury [25]. In this present review, we
briefly introduced the biogenesis and functions of
ncRNAs, and summarized the role and molecular mech-
anism of ncRNAs modulating autophagy in myocardial
I/R injury.

The biogenesis and function of ncRNAs
The biogenesis and function of miRNAs
MiRNAs are generally transcribed into a primary tran-
script called pri-miRNAs through RNA polymerase II
[26] or unusually RNA polymerase III [27], which com-
prise a 5 ‘terminal cap and a 3 ‘poly-A tail [28]. Subse-
quently, pri-miRNAs are treated with a complex

composed of RNase III enzyme Drosha, double stranded
RNA binding protein and DGCR8 (Di George Syndrome
Critical Region Gene 8) in the nucleus to obtain premiR-
NAs with a length of about 70 nucleotides, which fold
into a styloid loop structure [29]. Then, premiRNAs are
exported to the cytoplasm via the karyophorin Exportin
5 (Exp5) transporter [30]. Once in the cytoplasm, pre-
miRNAs are processed by RNase III enzyme Dicer to
produce double stranded RNA with a length of approxi-
mately 22 nucleotides. Dicer also initiates the formation
of RNA induced silent complex (RISC), which can medi-
ate miRNA expression and gene silencing caused by
RNA interference [31]. MiRNAs can silence gene expres-
sion through translation inhibition or degradation.

The biogenesis and function of lncRNAs
LncRNAs are usually generated by RNA polymerase
II, which contain 5′ end caps and 3′ poly-A tails
similar to their protein-encoding mRNAs [32]. Ac-
cording to their position in the genome relative to
protein coding genes, lncRNAs are currently divided
into following five types: sense lncRNAs, antisense
lncRNAs, bidirectional lncRNAs, intronic lncRNAs
and the long intergenic ncRNAs (lincRNAs) [33].
LncRNAs are initially considered as the ‘noise’ or
‘junk’ of genome transcription and a by-product of
RNA polymerase II transcription that has no bio-
logical function. However, recent studies have shown
that lncRNAs are widely involved in many important
regulatory processes, such as chromosome silencing,
genomic imprinting, chromatin modification, tran-
scriptional activation, transcriptional interference, and
nuclear transport [34]. LncRNAs can modulate tran-
scriptional silencing, activate protein coding genes,
bind to proteins to mediate their functions, associate
with mRNAs to affect their translation, and inhibit
the function of miRNAs as competitive endogenous
RNAs [35–37].

The biogenesis and function of circRNAs
During mRNA formation, premRNAs are spliced to wipe
off introns and connect exons to produce mature
mRNAs [38]. Specifically, plentiful premRNAs can be
processed by back-splicing, in which the downstream 5
‘splice site is connected with the upstream 3’ splice site
in reverse order on one or more exons to form cir-
cRNAs. On the other hand, the excised intron lariats in
the conventional splicing process can occasionally break
away from the branch and persist the circular form with
2 ‘, 5’ - phosphodiester bond between the splicing donor
and the branch point. These RNA loops are called circu-
lar intron RNAs [39]. Therefore, circRNAs are generally
grouped into three major types, including circular intron
RNAs (ciRNAs), exon intron circRNAs (eiciRNAs) and
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exon circRNAs (ecircRNAs) [40]. Therein, ciRNAs pop-
ulated in nucleus are always thought as the coproducts
of canonical splicing and back-splicing [39]. EcircRNAs
primarily resided in cytoplasm are yielded by back-
splicing and act as manifold functions [40]. EiciRNAs lo-
calized in nucleus are regarded as intermediate outcome
in the generation of ecircRNAs [41]. circRNAs play mul-
tiple roles in the biological processes. For instance, both
eiciRNAs and ciRNA can impact parental genes [42, 43].
Also, circRNAs can act as miRNA sponges, biomarkers
and translation modulators [40].

NcRNAs regulate autophagy in myocardial I/R-
injury
MiRNAs regulate autophagy in myocardial I/R-injury
MiRNAs are involved in various biological processes that
are implicated with cell fate, proliferation, stress re-
sponse and death [44, 45]. Intriguingly, extensive studies
have indicated that miRNAs contribute to myocardial I/
R-injury through autophagy. MiR-204 was lowly
expressed in myocardial I/R-injury rat model
constructed through 30 min ischemia followed by 2 h re-
perfusion. Furthermore, the expression of microtubule-
associated protein 1 light chain 3 (LC3)-II was increased
in myocardial I/R-injury rat model, which could be at-
tenuated by miR-204 mimic, suggesting the role of miR-
204 in myocardial I/R-injury through autophagy [46].
Another study showed that the expression of miR-204
was also significantly reduced after H9C2 cells were
treated with hypoxia for 12 h followed by reoxygenation
for another 24 h. The autophagy level was significantly
increased with H/R treatment, as evidenced by the eleva-
tion of Beclin-1 and the transform of LC3-I to LC3-II,
while this effect was reversed after the expression of
miR-204 mimics. Mechanistically, the overexpression of
SIRT1, a direct target of miR-204, could rescue the de-
clined Beclin-1 level and LC3-II/LC3-I ratio induced by
miR-204 overexpression, which was dampened by an au-
tophagy inhibitor, 3-MA. The results demonstrated that
miR-204 could weaken the H/R injury via modulating
SIRT1-mediated autophagy [47]. It was reported that
miRNA-30e was lowly expressed in patients with myo-
cardial I/R-injury as well. Interference of miRNA-30e
prominently enhanced the level of LC3B-II, Beclin-1 and
p62 in H9C2 cells. Moreover, downregulation of
miRNA-30e markedly repressed apoptosis (including de-
crease of cellular apoptosis, and reduction of the expres-
sion of Bax and caspase-3), and the level of iNOS and
oxidative stress, which could be dramatically reversed by
the suppression of autophagy after treated with 3-MA.
Accordingly, miRNA-30e could protect the heart from
myocardial I/R-injury through autophagy as well [48].
After rat hearts were subjected with 50 μmol/L sodium
hydrosulfide or 10 nmol/L urocortin 2 to build a

myocardial I/R injury model, miRNA array was utilized
to analyze the regulations of cardiac miRNA. Therein,
miRNA-221 was negatively correlated with autophagy
potentials. It could decrease the expression of LC3-II in
myocardial I/R injury. In addition, the messenger RNA
(mRNA) and protein levels of TP53inp1, Ddit4 and p27
were reduced in myocardial I/R injury model treated
with miRNA-221 mimic as well [49]. In myoblast H9c2
and neonatal rat ventricular myocytes treated with H/R,
miR-221 inhibited the autophagosome formation, which
was implicated with targeting the Ddit4/ mTORC1 path-
way and repression of Tp53inp1/p62 complex formation.
These findings indicated that miR-221 had a protective
role against myocardial I/R injury via autophagy [50]. In
addition, the expression of miR-142-3p was reduced
both in vitro and in vivo myocardial I/R injury model.
Myocardial I/R injury promoted autophagy, as shown by
enhanced percent of cells positive for LC3 AVs, which
was reversed by miR-142- 3p mimic. Additionally, the
effect of miR-142-3p on the level of LC3-II/LC3-I ratio,
Beclin-1 and p62 was similar to what was observed with
the above-mentioned results. Specifically, downregula-
tion of HMGB1 and Rac1 that were targets of miR-142-
3p [51, 52] and modulated autophagy [53, 54] restored
miR-142-3p inhibitor-enhanced autophagy [55].
Exosome-carried miR-30a inhibitor in the myocardial I/
R-injury rat model constructed by joint of the left anter-
ior descending coronary artery observably reduced the
protein expression of ULK1 and Beclin-1 in heart tissues
compared to that in the myocardial I/R-injury rat model,
which demonstrated that miR-30a could inhibit the
myocardial I/R-injury via modulating autophagy [56].
Besides, miR-30a was also reported to function in the

ischemic postconditioning, which was an endogenous
protective mechanism to diminish I/R injury. Upregula-
tion of miR-30a played a cardioprotective role of hypoxia
postconditioning in aged cardiomyocytes via repression
of BECN1-mediated autophagy, which could be abol-
ished by downregulation of miR-30a. Mechanistically,
the level of DNA hypomethylation mediated by DNA
methyltransferase 3b at miR-30a promoter was declined
with hypoxia postconditioning treatment, thereby result-
ing in overexpression of miR-30a [57]. Another experi-
ment showed that the expression of miR181a-1,
miR139-3p and Beclin-1 was reduced in myocardial I/R-
injury model, which could be rescued with postcondi-
tioning treatment, indicating the role of miR181a-1 and
miR139-3p in myocardial I/R-injury model via regulating
autophagy [58].
H/R is one of principal components of myocardial I/R-

injury, and the level of miRNAs is fleetly interfered when
cardiomyocytes are subjected with H/R [59]. miR-325
was highly expressed in anoxia/reoxygenation (A/R) and
I/R injury. Autophagy was potentiated by overexpression
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of the miR-325, while attenuated by downregulation of
miR-325. Mechanistically, the E2F1/miR-325/ARC sig-
naling axis that modulated autophagy was implicated
with myocardial I/R-injury [60]. Shao et al. used Langen-
dorff perfusion to build an I/R model in rats, and dealt
neonatal rat cardiomyocytes with H/R to construct an
in vivo model. Overexpression of miR-34a mimics de-
clined the level of LC3-II, p62 and autophagy after H/R
injury, which suggested that miR-34a could suppress the
level of autophagy after I/R, thus diminishing myocardial
I/R injury [61]. miR-429 was signally down-regulated
both in MI hearts and AR-induced cardiomyocytes.
miR-429 overexpression showed a decrease in the num-
ber of GFP-LC3B labelled cells, vesicle and autophago-
some in every cardiomyocyte, whereas suppression of
miR-429 inverted the above-mentioned effect. Addition-
ally, the level of LC3BI/II, p62 and ATG13 was memor-
ably enhanced when inhibition of miR-429 both in vivo
and in vitro. Importantly, the MO25/LKB1/AMPK signal
pathway mediated autophagy was associated with the
role of miR-429 in myocardial A/R injury [62]. Similarly,
the expression of miR-497 was also observably reduced
both in MI hearts and cultured neonatal rat cardiomyo-
cytes. Disturbance of miR-497 augmented autophagic
flux, and both in vivo and in vitro study showed that
LC3B-II level was reduced by upregulation of miR-497
and increased by downregulation of miR-497, respect-
ively. These results suggested that repression of miR-497
alleviated myocardial A/R injury through improving au-
tophagy [63]. It was also exhibited that miR-638 was
down-regulated in the human cardiomyocytes treated
with H/R. Also, autophagy was improved with H/R
treatment, which could be attenuated by the transfection
of miR-638 mimic. Moreover, miR-638 could target the
3′-untranslated region of ATG5 to inhibit the ATG5
level. Therefore, upregulation of miR-638 ameliorated
the H/R-induced autophagy via targeting ATG5 [64].
Another study indicated that miR-431 was lowly
expressed in human cardiomyocytes treated with H/R.
H/R treatments strengthened the autophagy level, which
was partly rescued by the transfection of miR-431
mimic. Consistently, miR-431 reduced the ATG3 expres-
sion through targeting the 3′-untranslated region of
ATG3. Thus, upregulation of miR-431 mitigated H/R
through ATG3 [65]. After exosomes obtained from bone
marrow mesenchymal stem cells (MSCs) included an el-
evated level of miR-29c were treated with H/R, their
protective efficacy was distinctly decreased, which was
associated with the level of exosomal miR-29c. More-
over, miR-29c could target the PTEN/AKT/mTOR sig-
nal pathway to reduce superabundant autophagy,
thereby protecting heart from I/R injury [66].
MiRNAs played an important role in the therapy for

myocardial I/R-injury through autophagy. Autophagy-

related genes (including Beclin-1, Atg5, Atg7 and Atg12)
were prominently lowly expressed in miRNAs let-7b-
transfected MSCs. Moreover, let-7b-transfected MSCs
injected into myocardium notably improved left ven-
tricular function and microvessel density. This means
that let-7b could protect MSCs injected into myocar-
dium from autophagy, raising the efficacy of MSCs ther-
apy [67]. A previous study revealed that miR-30a was
lowly expressed in myocardial I/R cells, which could be
rescued by salvianolic acid B in a dose-dependent man-
ner. Moreover, salvianolic acid B inhibited autophagy,
which promoted for cell survival in myocardial I/R cells.
More importantly, miR-30a inhibitor inverted the anti-
autophagy effect of salvianolic acid B against I/R injury.
Mechanistically, PI3K/Akt signaling axis was involved in
the protective role of salvianolic acid B in miR-30a-
mediated autophagy, as evidenced by PI3K inhibitor
LY294002 abolished the effect [68]. Another in vitro and
in vivo study showed that myocardial I/R injury en-
hanced autophagosomes, thus augmenting autophagic
flux, which was dampened by pretreatment with epi-
gallocatechin gallate. Furthermore, in vitro study re-
vealed that epigallocatechin gallate rescued the
downregulation of miR-384 targeting to Beclin-1. Both
upregulation of miR-384 and downregulation of Beclin-1
prominently autophagy induced by I/R injury, concur-
ring with the activation of PI3K/Akt pathway [69]. Rosu-
vastatin boosted the levels of miR-17-3p and LC3II/LC3I
in myocardial I/R cells. Knockdown of miR-17-3p de-
creased LC3II/LC3I level, while overexpression of miR-
17-3p enhanced LC3II/LC3I level. These results indi-
cated that autophagy occurred by upregulating the level
of miR-17-3p [70]. Table 1 showed the list and targets/
pathways of miRNAs in myocardial I/R injury.

LncRNAs modulated autophagy in myocardial I/R-injury
Similarly, lncRNAs could be involved in the heart
[71] and also regulate autophagy in myocardial I/R in-
jury. Yu et al. revealed that lncRNA MALAT1 en-
hanced cardiomyocyte autophagy by negatively
modulating the expression of miR-204 [72]. Since
miR-204 functioned in modulating autophagy via
LC3-II during myocardial I/R injury [46], a MALAT1/
miR-204/LC3-II signaling axis was speculated to regu-
late autophagy in myocardial I/R injury [73]. LncRNA
TUG1 was highly expressed in myocardial I/R injury
both in vitro and in vivo. Downregulation of tautine
upregulated gene 1 (TUG1) by siRNA significantly
suppressed autophagy, as detected by percent of cells
containing LC3+ AVs, and the expression of LC3-I,
LC3-II, Beclin-1 and p62. Functionally, TUG1
sponged miR-142-3p and alleviated myocardial I/R in-
jury through targeting HMGB1- and Rac1-induced
autophagy [55]. LncRNA PVT1 was upregulated in
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human AC16 cardiomyocytes challenged with H/R
treatment. Interference of PVT1 expression alleviated
autophagy, as determined by the decreased expression
levels of LC3-II and Beclin-1, the increased expression
of p62, and the reduced accumulation of autophagic
vacuoles. Moreover, PVT1 could sponge miR-186 that
directly targeted with the 3′-UTR of human Beclin-1
mRNA. Thus, miR-186 inhibitor declined the effects
of PVT1 downregulation on autophagy as detected
and described above [74]. Myocardin, a nuclear pro-
tein was highly expressed during I/R-injury, and its
downregulation repressed autophagy and diminished
myocardial infarction. P53, a tumor suppressor pro-
tein and always acting as a transcription factor, mod-
ulated cardiomyocytes autophagy and myocardial I/R
injury through modulating the myocardin expression.
LncRNA CAIF (cardiac autophagy inhibitory factor)
could directly bind to p53 and prevent p53-mediated
myocardin transcription, which leaded to the reduc-
tion of myocardin expression. Totally, CAIF inhibited
cardiac autophagy and protected hearts from myocar-
dial infarction via a CAIF-p53-myocardin signaling
axis [75]. Besides, lncRNA nuclear-enriched abundant
transcript (Neat1) was upregulated in diabetic mice
with myocardial I/R injury, which further exacerbated

myocardial I/R injury by promoting myocardial au-
tophagy via upregulation of Foxo1 to enhance H/R
injury [76].
It was demonstrated that lncRNAs could sponge miR-

NAs to modulate autophagy in myocardial I/R injury.
LncRNA autophagy promoting factor (APF) was indi-
cated to sponge miR-188-3p directly targeting ATG7 to
modulate autophagy and myocardial infarction. Down-
regulation of APF diminished autophagy and cardiac
dysfunction through the elevation of miR-188-3p and
decline of ATG7. The results revealed that APF pre-
vented MI and heart failure via APF/miR-188-3p/ATG7
signaling axis [77]. Endoplasmic reticulum stress (ERS)
is also one of main pathogenesis of myocardial I/R injury
and MI. Li et al. [78] used Tunicamycin (Tm) to triger
ERS, and found lncRNA discrimination antagonizing
non-protein coding RNA (Dancr) was lowly expressed in
Tm-induced group. Tm also triggered autophagy, as evi-
denced by the increase of the level of Beclin 1 and
LC3II/I ratio, and the decrease of the expression of p62.
Furthermore, overexpression of Dancr promoted au-
tophagy, as indicated by the raise of Beclin 1 and LC3II/
I expression, and also prominently downregulated the
expression of miR-6324. The directly binding between
Dancr and miR-6324 was verified by the dual-luciferase

Table 1 List and targets/pathways of miRNAs in myocardial I/R injury

miRNA Change in
expression

Downstream targets/pathways Study

miR-204 downregulation increase of LC3-II expression [45, 46]

miR-30e downregulation increase of LC3B-II, Beclin-1 and p62 level [47]

miR-221 upregulation decrease of LC3-II expression [48, 49]

miR-142-
3p

downregulation increase of percent of cells positive for LC3 Avs, and the level of LC3-II/LC3-I ratio, Beclin-1 and p62 [54]

miR-30a downregulation decrease of ULK1 and Beclin-1, and mediated by PI3K/Akt signaling axis [55, 56,
67]

miR181a-
1

downregulation decrease of Beclin-1 expression [57]

miR139-
3p

downregulation decrease of Beclin-1 expression [57]

miR-325 upregulation A E2F1/miR-325/ARC signaling axis modulating autophagy [59]

miR-34a downregulation decrease of LC3-II, p62 and autophagy level [60]

miR-429 upregulation decrease in the number of GFP-LC3B labelled cells, vesicle and autophagosome, increase of the level of
LC3BI/II, p62 and ATG13

[61]

miR-497 downregulation decrease of autophagic flux, and increase of LC3B-II level [62]

miR-638 downregulation increase of autophagy via targeting ATG5 [63]

miR-431 downregulation decrease of ATG3 expression [64]

miR-29c upregulation decrease of autophagy by targeting the PTEN/AKT/mTOR signal pathway [65]

let-7b downregulation decrease of Beclin-1, Atg5, Atg7 and Atg12 expression [66]

miR-384 downregulation increase of autophagosomes and autophagic flux, the activation of PI3K/Akt pathway [68]

miR-17-
3p

upregulation increase of LC3II/LC3I level [69]
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reporter assay. Overexpression of miR-6324 gently res-
cued the effects of Dancr overexpression on autophagy.
These finding indicated that upregulation of lncRNA
Dancr sponging miR-6324 prevented myocardial I/R in-
jury, thereby augmenting autophagy and restoring ER
homeostasis. LncRNA TTTY15 inhibited autophagy and
myocardial I/R injury through targeting miR-374a-5p.
Hence, TTTY15 modulated the miR-374a-5p expression,
thereby impacting the level of FOXO1 and autophagy in
myocardial I/R injury [79]. The global differential ex-
pression of lncRNAs analyzed by microarray analysis
showed that 797 lncRNAs were differentially expressed
in the H/R group. Therein, the repression lncRNA-
HRIM via specific siRNAs protected cells from death
through diminishing autophagy in H9c2 myocytes dur-
ing H/R [80]. LncRNA NEAT1 associated with the de-
velopment of various diseases was upregulated in
peripheral blood and mouse cardiomyocytes during MI,
which markedly increased the proliferation and migra-
tion of cardiomyocytes. It was indicated that NEAT1
suppressed miR-378a-3p level, and miR-378a-3p re-
pressed Atg12 level by target gene prediction and
screening, luciferase reporter assays. Additionally,
lncRNA NEAT1 sponged miR-378a-3p to modulate ex-
pression of Atg12 and related autophagic factors [81].
Additionally, lncRNA AK088388 was demonstrated to
directly bind to miR-30a using software analysis and
dual-luciferase reporter assays. The expression of miR-
30a was decreased, whereas that of AK088388, Beclin-1,
and LC3-II was increased in H/R cardiomyocytes. miR-

30a suppressed the level of AK088388, Beclin-1, and
LC3-II, while AK088388 enhanced the Beclin-1 and
LC3-II expression and repressed the expression of miR-
30a. All the results suggested that AK088388
competitively join to miR-30a, facilitating the Beclin-1
and LC3-II expression, and autophagy [82]. Long non-
coding RNA component of mitochondrial RNA process-
ing endoribonuclease (RMRP) negatively modulated the
level of miR-206, and RMRP overexpression exacerbated
hypoxia injury through downregulation of miR-206 in
H9c2 cells. Moreover, overexpression of miR-206 could
invert the effect of RMRP overexpression activating
PI3K/AKT/mTOR pathway in hypoxia-induced H9c2
cells. Since the role of miR-206 in hypoxia injury was
mediated by targeting ATG3, a RMPR/miR-206/ATG3
axis might be involved in alleviating the myocardial I/R
injury via activation of PI3K/Akt/mTOR pathway [83].
Oxygen-glucose deprivation and reoxygenation (OGD/
R) treatment enhanced the expression of long non-
coding RNA FOXD3 antisense RNA 1 (FOXD3-AS1),
which was accelerated the level of LC3 II, Beclin1,
ATG5, and reduced the expression of p62. Moreover,
overexpression of FOXD3-AS1 activated NF-κB/iNOS/
COX2 signaling pathway, which was obstructed by 3M.
These findings revealed that FOXD3-AS1 promoted
myocardial I/R injury via enhancing autophagy mediated
by NF-κB/iNOS/COX2 axis [84].
Additionally, owing to the aggravated effect on infarct

sizes and dysfunction after myocardial I/R injury, dia-
betes is regarded as a highly risk factor for the poor

Table 2 List and targets/pathways of lncRNAs in myocardial I/R injury

lncRNA Change in
expression

Downstream targets/pathways Study

MALAT1 upregulation a MALAT1/miR-204/LC3-II signaling axis to regulate autophagy [70,
71]

TUG1 upregulation increase of percent of cells containing LC3+ AVs, and the expression of LC3-I, LC3-II, Beclin-1 and p62 [54]

PVT1 upregulation increase of expression levels of LC3-II and Beclin-1, the decrease of expression of p62 and the accumulation
of autophagic vacuoles

[72]

CAIF downregulation inhibition cardiac autophagy via a CAIF-p53-myocardin signaling axis [73]

Neat1 upregulation promoting myocardial autophagy via upregulation of Foxo1 [74,
79]

APF upregulation modulating autophagy via APF/miR-188-3p/ATG7 signaling axis [75]

Dancr downregulation increase of the level of Beclin 1 and LC3II/I ratio, and the decrease of the expression of p62 [76]

TTTY15 upregulation inhibition of autophagythrough targeting miR-374a-5p [77]

HRIM upregulation reduction of autophagy [78]

AK088388 upregulation increase of Beclin-1, and LC3-II expression [80]

RMRP upregulation a RMPR/miR-206/ATG3 axis involved in autophagy via activation of PI3K/Akt/mTOR pathway [81]

FOXD3-
AS1

upregulation increase of level of LC3 II, Beclin1, ATG5, and reduced the expression of p62, mediated by NF-κB/iNOS/COX2
axis

[82]

AK139328 upregulation increase of the level of LC3-I/LC3-II, ATG5, ATG7 and p62 [83]

UCA1 upregulation reduction of cell autophage [84]
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prognosis. Knockdown of AK139328 dramatically en-
hanced the miR-204-3p level in diabetic mice with myo-
cardial I/R injury. Furthermore, downregulation of
AK139328 and upregulation of miR-204-3p suppressed
the level of LC3-I/LC3-II, ATG5, ATG7 and p62, thus
reducing the H/R injury. Collectively, AK139328 directly
regulated miR-204-3p and then repressed cardiomyocyte
autophagy in diabetes [85]. In addition, it was reported
that morphine postconditioning (MpostC) declined
myocardial reperfusion injury. Thus, Chen et al. found
that MpostC treatments prominently diminished cell
autophage, increased the lncRNA UCA1 expression, and
decreased the miR-128 level compared to these in I/R
cardiac tissues. Moreover, it was demonstrated that the
binding of UCA1 and miR-128 using RNA immunopre-
cipitation (RIP) and RNA pull-down assays, and that of

miR-128 and HSP70 using the luciferase reporter assay,
which eventually suggested that the UCA1/miR-128/
HSP70 signaling axis was involved in the protective ef-
fect of MpostC on myocardial I/R injury [86]. Table 2
shows the list and targets/pathways of lncRNAs in myo-
cardial I/R injury.

CircRNAs modulated autophagy in myocardial I/R-injury
The covalently closed structure of circRNAs gives them
high stability that makes them play vital roles in myocar-
dial I/R injury. CircRNA autophagy-related circular RNA
(ACR) mediated cardiomyocyte autophagy by directly
targeting Dnmt3B and obstructing Dnmt3B-mediated
DNA methylation of Pink1 promoter to activate the ex-
pression of Pink1, and Pink1 was demonstrated to phos-
phorylate FAM65B at serine 46 to inhibit autophagy and

Fig. 1 A diagram showing regulation of autophagy pathway by ncRNAs after myocardial ischemia-reperfusion injury. The diagram exhibited the
various ncRNAs and their targets that are involved in the modulation of autophagy during myocardial ischemia-reperfusion injury. The listed
targets included LC3-II, p62, Beclin-1, ULK1, Atg3, Atg5, Atg7, Atg12, Atg13, PI3K/AKT signaling pathway. MiRNAs show as in black in the yellow
box, and lncRNAs in green
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decrease MI size. All these results suggested that the
protective role of the ACR/Pink1/FAM65B axis in the
myocardial I/R injury [87]. CircPAN3 was downregu-
lated in myocardial I/R injury, and circPAN3 overexpres-
sion markedly repressed autophagy, as further detected
by a decrease of autophagic vacuoles. Moreover, cir-
cPAN3 directly targeted with miR-421 to regulate myo-
cardial I/R injury, and miR-421 negatively modulate
Pink1 (phosphatase and tensin homologue-induced pu-
tative kinase 1) through binding sites. Downregulation of
Pink1 abrogated antiautophagy induced by circPAN3
overexpression in myocardial I/R injury. Therefore, cir-
cPAN3 provided protective role in the myocardial I/R
injury via circPAN3-miR-421-Pink1 signaling axis-
mediated autophagy [88]. Pretreatment with Salidroside,
exhibiting protective effect on cardiovascular system, au-
tophagy was prominently suppressed in myocardial I/R
injury rat model, which was gently rescued by rapamycin
(RAPA), an autophagic agonist, accompanied with the
upregulation of circ-0000064. Thus, the protective role
of Salidroside in myocardial I/R injury was associated
with the upregulation of circ-0000064 and the repression
of autophagy [89].

Conclusion
Myocardial I/R injury is an inevitable problem in the
treatment of ischemia that can lead to re-infarction, ma-
lignant arrhythmias and heart failure, thereby threaten-
ing human health severely. Several pathogenesis’
pathways are involved in myocardial I/R injury, includ-
ing autophagy. Autophagy plays various roles both in
physiological and pathophysiological processes, and dys-
regulation of autophagy is relevant in many cardiac dis-
eases, such as ischemic heart disease, dilated
cardiomyopathy, and heart failure. In recent years,
ncRNAs has been demonstrated to develop essential
roles in myocardial I/R injury mediated by autophagy.
Therefore, we summarized and discussed the role of
ncRNAs in myocardial I/R injury mediated by autophagy
(Fig. 1), which is particularly significant for the under-
standing the pathogenesis and molecular mechanism of
myocardial I/R injury, even eventually improving cardio-
vascular disease. Owing to the dysregulation of ncRNAs
in myocardial I/R injury, they are generally considered
as biomarkers or therapeutic targets for myocardial I/R
injury. Noteworthily, many ncRNAs may correspond
with the identical miRNA response element to form
competitive endogenous RNAs (ceRNAs), which take
part in the progression of myocardial I/R injury. Thus,
lncRNAs and circRNAs can sponge miRNAs to generate
lncRNAs/circRNAs-miRNA-mRNA signaling axis to
regulate myocardial I/R injury, and cardiovascular
diseases.
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