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Abstract 

Background:  Heart valve replacement in neonates and infants is one of the remaining unsolved problems in cardiac 
surgery because conventional valve prostheses do not grow with the children. Similarly, heart valve replacement in 
children and young adults with contraindications to anticoagulation remains an unsolved problem because mechani-
cal valves are thrombogenic and bioprosthetic valves are prone to early degeneration. Therefore, there is an urgent 
clinical need for growing heart valve replacements that are durable without the need for anticoagulation.

Methods:  A human cadaver model was used to develop surgical techniques for aortic valve xenotransplantation.

Results:  Aortic valve xenotransplantation is technically feasible. Subcoronary implantation of the valve avoids the 
need for a root replacement.

Conclusion:  Aortic valve xenotransplantation is promising because the development of GTKO.hCD46.hTBM trans-
genic pigs has brought xenotransplantation within clinical reach.
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Introduction
Valvular heart disease affects approximately 2.5% of 
the U.S population and causes over 25,000 deaths each 
year [1, 2]. Severe cases are typically treated using heart 
valve replacement [3]. However, conventional heart 
valve prostheses are marred with drawbacks. Mechan-
ical valves are durable but highly thrombogenic. 
Therefore they require permanent anticoagulation. 
Anticoagulation for mechanical valves is associated 
with a risk of major bleeding or thromboembolic events 
of 1% per patient-year [4–7]. Anticoagulation also poses 
particular challenges for female patients during their 
reproductive years and for patients with active lifestyles 
[8–10]. Therefore, the American College of Cardiology 

and the American Heart Association recommend bio-
prosthetic valve prostheses in patients of any age for 
whom anticoagulant therapy is contraindicated [11]. 
Bioprosthetic valves do not require anticoagulation but 
are prone to early structural valve degeneration. This 
puts young and middle-aged patients at a high risk for 
re-interventions to replace the degenerated biopros-
thesis [4, 12]. The same is true for homografts. Addi-
tionally, neither chemically fixed bioprosthetic valves 
nor mechanical valves have the potential to grow with 
children. Therefore, children with conventional valve 
replacements are committed to serial re-operations for 
successively larger implant exchanges. These patients 
often endure up to 5 or more open heart operations in 
their lifetime [13]. Therefore, there is an urgent clinical 
need for heart valve replacements that are durable with-
out the need for anticoagulation and that grow adap-
tively with children. For the last fifty years, approaches 
to deliver such valve replacements have focused on tis-
sue engineering. However, all tissue engineered valves 
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have failed in clinical translation [14–18]. This is a criti-
cal barrier to progress.

We propose heart valve xenotransplantation as a new 
approach to deliver growing heart valve replacements 
that are durable without the need for anticoagulation 
(Fig.  1). Unlike conventional porcine or bovine bio-
prostheses, xenotransplants contain live cells that allow 
the graft to avoid thrombogenesis, heal from mechani-
cal damage to valvular extracellular matrix, and grow 
with children. This comes at the cost of immunosup-
pression. Heart valve xenotransplantation resembles 
homograft valve replacement from a surgical perspec-
tive and cardiac xenotransplantation from a transplant 
immunology perspective (Fig.  2). This approach is 
promising because the development of GTKO.hCD46.
hTBM transgenic pigs has brought xenotransplantation 
is within clinical reach [19, 20]. Here we describe surgi-
cal techniques for aortic valve xenotransplantation that 
were developed in a human cadaver model.

Donor operation
Porcine donor hearts (Animal Technologies, Tyler, TX) 
are excised and preserved in ice-cold University of Wis-
consin solution (Global Transplant Solutions, Spartan-
burg, SC) in typical fashion for a standard human donor 
cardiectomy. To prepare the donor aortic valve, the donor 
aorta is divided just distal to the sinotubular junction. 
The aortic root is then dissected to the aortic annulus. 
The anterior leaflet of the mitral valve and the ventricu-
lar muscle are carefully trimmed to within 2–3  mm of 
the aortic valve annulus. The sinuses of valsalva are also 
trimmed, leaving only the commissural posts suspend-
ing the aortic valve within (Fig. 3). The donor aortic valve 
is kept in ice-cold University of Wisconsin solution until 
ready for transplantation.

Recipient operation
Human cadavers donated to the Medical University 
of South Carolina were used to develop the recipient 
operation. The heart and aorta are exposed by mid-
line sternotomy. Aortic and right atrial cannulae for 

Fig. 1  Heart valve xenotransplantation involves temporary immune suppression until the transplanted valve can be exchanged for an adult-sized 
prosthetic valve in the grown child

Fig. 2  Heart valve transplantation overlaps with conventional heart 
transplantation from a immunology perspective and homograft valve 
replacement from a surgical perspective

Fig. 3  The donor valve is prepared by trimming the ventricular 
muscle and mitral valve to within 2–3 mm of the aortic valve 
annulus. The sinuses of valsalva were also trimmed, leaving only 
the commissural posts suspending the aortic valve behind. Panel A 
shows the superior view, panel B shows the lateral view of the valve
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cardiopulmonary bypass and a right superior pulmo-
nary vein vent are inserted in the usual fashion. The 
ascending aorta is cross-clamped and antegrade car-
dioplegia is delivered into the root. The aorta is divided 
just distal to the sinotubular junction and the aortic 
valve is exposed by placing retraction sutures at the 
level of each commissure. The diseased aortic valve is 
excised (Fig.  4). Pledgeted horizontal mattress sutures 
are placed in the annulus of the recipient aorta using 
4-0 braided polyester suture. The sutures are then 
placed through the donor aortic valve annulus (Fig. 5). 
The donor aortic valve is oriented 120 degrees coun-
terclockwise relative to the recipient aortic valve so 
that the donor right coronary sinus is aligned with the 
recipient left coronary sinus. This moves the muscle 
rim under the right coronary sinus of the graft pos-
teriorly, where it is less likely to protrude into the left 
ventricular outflow tract. The donor valve is then para-
chuted into the aortic root and each suture is tied. The 
donor valve commissural pillars are suspended in the 
recipient aorta with 4-0 prolene sutures (Fig.  6). The 
ascending aortotomy is closed and the operation is 
completed in the usual fashion.

Discussion
Partial heart xenotransplantation is a new approach to 
deliver growing heart valve replacements that are dura-
ble without the need for anticoagulation. Initially the 
entire heart is recovered from the donor animal and 
transported on ice within 6 h to the recipient. The valve 
is then removed from the donor heart on the backtable 
and immediately transplanted into the recipient. Here we 
describe surgical techniques for valve implantation devel-
oped in a human cadaver model. Several factors were 
considered during the development of these techniques.

Root replacement versus subcoronary valve implantation
Heart valve transplantation can be accomplished by root 
replacement or subcoronary valve implantation. The 
aortic root replacement technique is technically easier, 
because the valve and root are implanted as a functional 
unit. Therefore matching of the graft size to the host 
annulus is more forgiving and function of the valve is less 
prone to surgical error [21]. In contrast, the subcoronary 
implantation technique has a steeper learning curve [21, 
22]. This technique was initially described by Barratt-
Boyes for homografts and was subsequently adapted as 

Fig. 4  The human recipient aorta is opened and the diseased aortic 
valve excised similar to a conventional aortic valve replacement. 
Transection of the aorta above the sinotubular junction optimizes the 
exposure

Fig. 5  Mattress sutures are placed through the native aortic annulus 
and the donor valve annulus to allow parachuting the donor valve 
into the recipient aortic root
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an alternative to the root replacement technique in the 
Ross procedure [23, 24]. For heart valve xenotransplan-
tation, the subcoronary technique has the advantage of 
minimizing the donor tissue burden on the host.

Controversy exists over the use of the subcoronary vs 
root replacement technique with regard to their long-
term durability and outcomes [25]. While some stud-
ies cite a lower reoperation rate and incidence of aortic 
regurgitation after root replacement compared to subcor-
onary implantation, others found root replacement to be 
associated with an increased risk of perioperative death 
[25–27]. However, when early reoperations for aortic 
regurgitation due to plain technical failure was excluded, 
no major differences between the root replacement and 
subcoronary implantation technique were found [21].

Modifications to the subcoronary technique
McGriffin and Kirkland found that failure of grafts 
implanted by the subcoronary technique is often due 
to geometric distortion of the donor valve commissural 
pillars, which must be aligned just as they were in the 
donor [28]. However, this alignment may not always be 
possible due to distortion of the recipient aortic root. 

Modification of the subcoronary technique with reten-
tion of the noncoronary sinus maintains the geometric 
relationship of the two commissures on each side of the 
sinus [28]. While this modification has the disadvan-
tage that the additional tissue increases the donor tis-
sue burden, it should be kept in mind depending on the 
anatomy of the recipient aortic root. For example, aneu-
rysmal dilation of the non coronary aortic sinus could be 
an indication for retaining the noncoronary sinus of the 
donor graft.

It is also possible to invert the donor valve into the left 
ventricular outflow tract to complete the annular suture 
with a continuous suture line [28]. However, while this 
maneuver saves cross-clamp time, it can be difficult in a 
small aortic root [29].

Rotation of the donor valve
The porcine aortic valve differs from the human aortic 
valve because a larger part of the annulus is supported 
by ventricular muscle [30]. Therefore, the donor valve 
was rotated by 120 degrees counterclockwise, bring-
ing the donor non-coronary sinus against the recipient 
left coronary sinus. This maneuver moves the proximal 
muscle rim of the donor valve posteriorly an minimizes 
its protrusion into the left ventricular outflow tract [29]. 
Barrett-Boyes described a 180 rotation to avoid sewing 
muscle to muscle and so that the more difficult anterior 
sutures, which bite into muscular tissue of the patient’s 
septum, pass through the fibrous aortic ring of the graft 
[23]. Notably, rotation of the graft cannot be performed if 
the noncoronary sinus is retained.

Size mismatch
A possible obstacle is size mismatch of the donor graft 
and host aortic root. Ideally, this is addressed by selecting 
appropriately sized donor valves with a defined diameter. 
The ideal donor aortic valve has an internal diameter of 
2–3 mm less than the recipient annular diameter [29, 31]. 
Alternative techniques to address size mismatch include 
the use of everting versus non-everting annular sutures 
and root enlargement or root plication techniques.

In case of a small host aortic valve that goes beyond 
mere size mismatch, there are several alternative tech-
nical options for xenograft valve transplantation. Firstly, 
a posterior root enlargement (Manugian or Nicks) can 
be performed. Secondly, an anterior root enlargement 
(Konno) can be performed. An anterior root enlarge-
ment can increase the root size by a greater degree, but 
is technically more complex. Thirdly, the host root can be 
replaced with the xenograft root. The xenograft root can 
also be harvested with additional tissue for a combined 
aortic root transplantation and Konno root enlargement. 
This will provide the greatest degree of root enlargement.

Fig. 6  The donor valve commissural pillars are suspended in the 
recipient aorta using mattress sutures
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Valve competency
After valve transplantation, competency may be tested 
with saline injection into the root prior to completion 
of the aortotomy closure and removal of the aortic cross 
clamp. While this technique may identify large perivalvu-
lar leaks or severe malcoaptation of the valve leaflets, this 
is an insensitive test for the transplanted valve. Recently, 
a device has been designed to evaluate aortic valve repair 
under physiologic pressures, which may be used to test 
transplanted valves in the future [32].

Transplant immunobiology and developmental biology
Investigation into the immunobiology and developmental 
biology of transplanted valves is ongoing, but graft toler-
ance and growth are favorably supported by experience 
with conventional heart transplantation. For example, 
valvular dysfunction is not clinically recognized even in 
patients dying of fulminant myocardial rejection [33]. 
The incidence of aortic valve intervention after heart 
transplantation is exceedingly low, occurring in 0 in 867 
and 2 in 1466 consecutive heart transplant recipients 
in two large institutional series at a median follow-up 
greater than 4 years [34, 35]. In addition, our group has 
demonstrated that structural integrity, cellular viability, 
and cellular proliferation in neonatal rat aortic grafts is 
maintained even after 48 h of cold storage in University 
of Wisconsin preservation solution [36]. This suggests 
that wide geographic transport of donor valves is feasible 
without adversely affecting graft survival.

Comparison with the Ross operation
The Ross operation is currently the most widely used 
valve replacement strategy to provide a growing, dura-
ble, and thromboresistant valve in children and younger 
adults. This strategy has several drawbacks which will 
make valve transplantation favorable. In children, rein-
tervention on the right ventricle to pulmonary artery 
conduit poses a significant morbidity and mortality risk 
for these growing patients [37]. Neonates and infants 
have particularly dismal outcomes after Ross operation 
with a 24–30% in-hospital mortality [38, 39]. Finally, for 
patients with dysfunctional pulmonary valves such as 
those with truncus arteriosus, the Ross operation is not 
a viable option.

Regarding growth, Ross pulmonary autografts and aor-
tic annuluses after conventional heart transplantation 
follow appropriate somatic growth curves following exci-
sion and implantation [40, 41]. However, the Ross valve 
is a pulmonary valve that physiologically operates under 
much lower pressure. Therefore there is concern for 
inappropriate dilation of the root and early failure of the 
valve. On the other hand, the retained growth potential 

and developmental biology of transplanted valves has 
yet to be specifically explored. So far, valve growth after 
xenotransplantation has not been examined in vivo.

Conclusion
Conventional heart valve prostheses do not contain live 
cells. Therefore these prostheses fulfil the structural func-
tions of native heart valves, but they cannot fulfil their 
biological functions, namely adaptive growth, avoiding 
thrombogenesis, and self-repair. This severely limits the 
lifespan of the conventional heart valve prostheses in 
growing children and young adults with contraindica-
tions for anticoagulation [42, 43]. While glutaraldehyde 
fixation decreases the antigenicity of bioprosthetic heart 
valves to avoid immune rejection, it also may underlie 
several of the pathophysiological features of early struc-
tural valve degeneration. For example, the loss of glycosa-
minoglycans and elastin as well as collagen cross-linking 
resulting from glutaraldehyde treatment makes biopros-
thetic valves rigid and adversely affects their mechanical 
properties [12]. Glutaraldehyde fixation may also contrib-
ute to prosthesis-related dystrophic calcification, as it has 
been found that treatment of porcine aortic valves by glu-
taraldehyde results in their gradual calcification accom-
panied by a depletion of calcium ions from the culture 
medium [44]. Bioprosthetic valves are also more prone 
to degeneration because of the altered structure of the 
chemically treated extracellular matrix [12]. Again, the 
absence of live cells in these valves mean that mechanical 
damage to the extracellular matrix is not repaired.

Heart valve xenotransplantation is a new approach to 
deliver growing heart valve replacements that are dura-
ble without the need for anticoagulation. This addresses 
an urgent clinical need for growing heart valve replace-
ments for children, as well as young adults with con-
traindications for anticoagulation. Therefore heart valve 
xenotransplantation can spare these patient populations 
from serial re-interventions for heart valve exchanges. 
The transplanted valves are fresh and contain live cells 
that allow the valve to perform biological functions such 
as growth, avoiding thrombogenesis, and self-repair of 
the extracellular matrix. These advantages do not come 
without disadvantages. Most importantly, patients who 
receive transplanted valves require immunosuppression 
until the transplanted valve can be replaced for a conven-
tional prosthesis in the grown child or older adult.

In summary, heart valve transplantation is a new opera-
tion to deliver heart valve replacements with the ability to 
grow, self-repair, and avoid thrombogenesis. Xenotrans-
plantation is a promising approach because it would 
allow for donor valves of appropriate size to be delivered 
to hospitals “just-in-time” for transplantation (Fig. 7).
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Abbreviation
GTKO.hCD46.hTBM: Alpha 1–3 galactosyltransferase gene knockout pigs, 
which express human complement regulatory protein CD46 and human 
thrombomodulin.
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