Preoperative imaging with contrast thorax computed tomography is required to visualize adequately the degree of calcification of the ascending aorta and the vascular anatomy of the arch, with particular attention to the degree of calcification around the origins of head and neck vessels.
The standard preparation and draping of the patients for aortic arch surgery has been previously well described.
Our approach (Figure 2) specifically combines 1. extended median sternotomy with preservation of the innominate vein and 2. left subclavicular incision cephalad to the deltopectoral groove [5], transection of the left pectoralis minor muscle for access and control of the distal SCA (emphasis on preserving the trunks and divisions of the left brachial plexus).
Once proximal and distal control is achieved on the ascending aorta and the three arch vessels with colour-coded silastic slings, 5,000 international units of heparin are given intravenously. The proximal anastomosis (20 mm, 'bottom end') is fashioned following application of side-biting clamp and continuous 4.0 Polypropylene sutures were used reinforced with Teflon felt. The innominate artery (IA) anastomosis (10 mm right limb of the bifurcated graft, right top end) follows with 5.0 polypropylene suture and partial clamping of the vessel. Subsequently, whilst flow in the IA resumes, the LSC anastomosis (primary left top end) is similarly constructed after feeding the 10 mm left limb of the graft by way of a Roberts clamp and vascular tape through a tunnel leading from the sternotomy, anterior to the origin of the LSC by the thoracic outlet to the left subclavicular incision. Care is taken for the graft not to be compressed or otherwise distorted through the tunnel with temporary approximation of the sternal edges whilst fashioning the anastomosis, while important neighbouring structures (left vertebral artery, left brachial plexus, left subclavian vein and thoracic duct) are safeguarded. The proximal part of LCC is ligated with heavy silk, a vascular clamp is applied in the distal part and the LCC is divided. The last distal anastomosis (secondary left top end) is that of the distal LCC on the antero-medial aspect of the 10 mm left limb of the graft to the LSC with same suture technique and tapering.
The other two proximal parts of arch vessels (IA, LSA) are ligated with heavy silk ties to avoid endo-leak and the proximal anastomosis is marked by heavy radio-opaque clips to orientate the deployment of the endoaortic graft that is next inserted by the vascular surgeon and interventional radiologist in order to obliterate the distal part of the aneurysm. The endovascular part of the operation has also been previously well described.
With small differences in the minutiae of the operation, we have applied this technique in three patients, avoiding these with Marfan syndrome (see conclusion). The outcome was favourable in each occasion.