In this study of 502 patients undergoing elective cardiac surgery, we found that 60% received RBC within the first 72 postoperative hours. Patients requiring RBC transfusion were older, most of them were female, underwent redo and complex surgeries, had higher EuroSCORE, presented with lower levels of hemoglobin and hematocrit and had a higher incidence of renal disease. In a multivariable model adjusted for univariate associations, RBC transfusion was a predictor of longer hospital length of stay, and the strongest association was found in the high transfusion group. Independent of the strategy of transfusion, patients who received RBC transfusion in the first 72 postoperative hours had a higher incidence of complications, including renal failure, cardiogenic shock, acute respiratory distress syndrome, infectious, neurologic and inflammatory complications and longer hospital length of stay.
Significant variability in transfusion practice exists in cardiac surgery. A recent analysis [5] of blood practices across 798 US hospitals drew attention to this problem. In hospitals performing at least 100 on-pump CABG operations (82 446 cases), rates of blood transfusion ranged from 7.8% to 92.8% for RBCs, 0% to 97.5% for fresh-frozen plasma, and 0.4% to 90.4% for platelets. Multivariable analysis revealed that after adjustment for patient-level risk factors, hospital transfusion rates varied by geographic location (P = .007), academic status (P = .03), and hospital volume (P < .001).
We found patients who were female, older, underwent redo or complex surgeries, as well as those who had higher EuroSCORE, renal disease, or previous anemia, were more likely to receive RBC transfusion. This finding emphasizes the need to maximize efforts to improve perioperative care in these subgroups of patients in order to avert RBC transfusion adverse events, including increased hospital length of stay.
Rates of transfusion persist high after cardiac surgery despite studies showing that RBC transfusion does not result in better outcomes and even increases rates of complications after cardiac surgery [6]. Guidelines from the Society of Thoracic Surgeons and Society of Cardiovascular Anesthesiologists emphasize the lack of evidence on transfusion triggers after cardiac surgery [7]. Most transfusion indications occur in the first 72 hours after surgery, starting in the operating room, where usually the transfusion indication is due to hemodilution and based on triggers [2].
The rationale for implementing a restrictive transfusion strategy is based on analysis of studies reporting a lack of benefit and, at the same time, substantially increased costs and adverse effects associated with RBC transfusion. These adverse effects include acute hemolytic and nonhemolytic reactions, transmission of viral and bacterial diseases, transfusion-related acute lung injury, and transfusion-associated circulatory overload [8]. Immunosuppression has also been associated with transfusion and may explain the higher risk of infection and recurrence of neoplastic diseases observed in transfused patients [9].
In a retrospective analysis of 11, 963 patients who underwent isolated CABG surgery, Koch et al [10] showed that perioperative RBC transfusion was associated with a dose-dependent increased risk of postoperative cardiac complications, serious infection, renal failure, neurologic complications, overall morbidity, prolonged ventilator support, and in-hospital mortality. In a similar retrospective study, Murphy et al [11] showed that RBC transfusion was strongly associated with infection and with postoperative ischemic morbidity, hospital stay, increased early and late mortality, and hospital costs.
Recently, the TRACS study prospectively demonstrated the safety of a restrictive strategy of RBC transfusion in patients undergoing cardiac surgery [2]. Also, this study reported that the higher the number of transfused RBC, the higher was the number of clinical complications [2].
In our study, we found that patients exposed to RBC transfusion had more complications when compared to patients not exposed, a similar result described in previous reports [1–4, 6, 10]. The evaluation of mechanisms related to RBC transfusion that results in morbidity were not included in this study. However, our hypothesis it that these potential effects may underlie the independent association between blood transfusion and prolonged LOS. On univariate comparison, total length of stay was approximately 6 days longer in the population of patients who received more than 3 RBC units of transfusion and 1 day longer in patients receiving until 3 units as compared to non-exposed group. Multivariate analysis demonstrated a significant relationship between early postoperative transfusion (more than 3 units of RBC) and longer hospital stay.
De Cocker et al [12]. performed a retrospective analysis of 1566 patients undergoing cardiac surgery and identified age greater than 75 years, female gender, NYHA functional class greater than II, arrhythmias, mitral regurgitation, need for inotropic support or intra-aortic balloon pump, non-elective procedures and aortic surgery as predictive factors for a prolonged ICU stay [12]. However, in this study, blood transfusion was not evaluated as a potential predictor of increased hospital LOS [12].
Prolonged hospital LOS is being studied because it results in increased costs, and clinical complications as exposure to infectious agents. It constitutes a possible method to estimate complications after cardiac surgery [13]. Several models have been developed to predict prolonged stay after cardiac surgery. In our practice, the EuroSCORE is widely applied to predict both mortality and prolonged hospital stay [14, 15]. Our findings incorporate RBC transfusion higher than 3 units after cardiac surgery as a strong predictor of prolonged LOS. Also, age higher than 65 years, valvular surgery or a combined procedure, left ventricular ejection fraction lower than 60% were also predictors of increased hospital length of stay, as have been previously reported [15].
Limitations of our study include that it was performed in a single referral center for cardiac surgery, which could compromise the generalizability of our findings. Also, the associations we found between RBC transfusion and longer LOS do not explain causality due to the fact of RBC transfusion may only be a surrogate marker of perioperative complications or higher morbidity. In fact, older and sicker patients with more debilitating conditions were stratified into the transfusion group and it may lead to a misinterpretation. So, it is possible that other variables with impact LOS and not included in the results, may not have been present in the multivariable model. Moreover, the present study is a retrospective analysis from a previous randomized clinical trial with a dictated trigger. Retrospective studies are best done in a large cohort of consecutive unselected patients which could limit our interpretation.