Hemoptysis is one of the most common symptoms in clinical practice. Bronchiectasis, tuberculosis, and malignancies account for most of the causes [1]. However, congenital vascular diseases, such as pulmonary arteriovenous malformations and arterial pulmonary malinosculation are also possible causes that are frequently neglected. Based on Pryce’s classification in 1946 [3], an anomalous systemic arterial supply without bronchopulmonary sequestration has been categorized as a Pryce type I abnormality. The most common aberrant arterial supply derives from the aorta and typically supplies the left lower lobe of the lung. Anomalous systemic vascular supply of the left upper lobe is especially rare and only four reported cases were found in a search of the literature [4,5,6]. Because of this anomalous anatomy, some issues such as secondary pulmonary hypertension and hemoptysis may be caused by connection of the systemic and pulmonary blood flows, which creates a left-to-left shunt. In our presenting case, a series of work up was performed initially to clarify the possible etiologies as the patient presented solely with hemoptysis. Due to negative findings of laboratory data and sputum cultures without obvious signs of infection, the imaging studies were arranged.
To identify aberrant vascular anatomy, multidetector computed tomography (MDCT) or multidetector computed tomography angiography (MDCTA) combined with 3-D reconstruction has gradually replaced the diagnostic role of angiography, which had been used conventionally for the determination of anomalous vessels. These new approaches are noninvasive and provide better spatial precision [2]. In our patient, both the image examination tools of MDCTA combined with 3-D volume rendering for reconstructing images and angiography were applied for a noninvasive approach to this vascular anomaly, aiming to delineate the anatomy of collateral aberrant vessels and planning surgical procedure [7], respectively, which provided a comparison between these two tools.
Lobectomy or segmentectomy, which aims at excision of the lung parenchyma perfused by the anomalous vessel, has been the standard treatment for this abnormality. Surgical ligation of the aberrant vessel has also been reported to be effective in eliminating symptoms [5]. However, TAE has been shown to be a promising alternative treatment for congenital arterial malformations. By placing endovascular devices, including metallic coils, vascular plugs, or other materials to occlude the aberrant artery, TAE provides a nonsurgical intervention choice that can be performed simultaneously while performing angiography. Although some severe complications including pulmonary infarction, and embolization of nontargeted arteries caused by migration of embolized materials, might be of concern, recurrent symptoms or serious complications have barely been reported [8, 9]. In our case, TAE was attempted while performing angiography but failed because of the tortuosity of the vessels. Surgical intervention with ligation of the hypervascular lesion and lingual segmentectomy were eventually performed without further complications or symptom remissions.