Conventional nursing
Conventional nursing care played an important role in nursing practices. Pulmonary infection was demonstrated to be the highest mortality complication because of early or delayed treatment for ARDS (Acute Respiratory Distress Syndrome) after pneumonectomy. It was essential to clear up airway secretions timely to prevent lung infection caused by weak cough and sputum. Effective respiratory function training played a significant role in improving patients’ pulmonary function and preventing postoperative pulmonary infection [6]. There needed some precautions for removing secretions after the operation: (1) The nurse instructed the patient to exercise respiratory function in bed every 2 h, to ensure him cough and expectorate effectively. (2) On the first day, the right main bronchus and subordinate lobar bronchus were cleaned with a fiberoptic bronchoscope and normal saline irrigation and aspiration were performed to remove the bloody viscous secretion. Then visible fiberoptic bronchoscopy was performed every 2 days to aspirate sputum, which effectively improved the symptoms of pulmonary infection. (3) The patient’s weak constitution and excision of the carina, leaded to the poor cough and sputum after surgery. In addition, the adequate drainage of the respiratory secretions were not able to be guaranteed, for the limited activity of respiratory cilia caused by the negative balance. The nurse was encouraged to pat the back and guide the patient to cough and expectorate every 2 h without affecting the patient’s rest. The nurse assessed patient’s cough-induced pain, monitored the nature, volume, and color of sputum. Furthermore, evaluating the pulmonary function daily was essential to prevent complications, such as bronchopleural fistula and pneumothorax.
Nursing essentials and challenges
Nursing of ECMO and position transformation
ECMO is the best treatment to replace the cardiopulmonary function and an excellent choice to treat intrabronchial primary bronchial tumors near carina [7]. Due to the special location of the patient’s tracheal tumor, the left lung function was lost. Firstly, doctors resected carina and reconstructed the bronchial of the lower end of the bronchus through the right and left sequential bilateral thoracic cavities, and then carried out left pneumonectomy through the left thoracic cavity. As this operation program was the first case in China, both EMCO nursing and posture conversion were important. The insertion of the ECMO pipeline might promote and consume coagulation and anticoagulant components because it would cause many inflammatory reactions [8]. The medical team decided to use low-dose heparin for anticoagulation at 10 ~ 50 U/kg per hour to maintain Activated Clotting Time (ACT) of 160 s, for the 200 ml intraoperative hemorrhage. At the same time, 4 U of red blood cells and 600 ml of fresh frozen plasma were infused.
ECMO was the essential requirement for protecting the patient’s life, while the position of the patient’s body should be adjusted during the surgery. Considering the potential ineffectively operation, unstable hemodynamics, and pipeline prolapse risks during the position of turning and moving, the teamwork was necessary [9]. A team was formed which included ICU doctors, thoracic surgeons, anesthesiologists, and nurses in the operation theatre, then the team worked out the standard of the position, turning and moving in advance to predict the potential problems while formulating the emergency response measures. After fully assessed the risks and identified the demand of the patient’s position, the anesthesiologist stood next to the patient’s cephalic side to ensure the ventilation of the artificial airway. Meanwhile, an ICU doctor stood at the end of the bed to fix the patient’s lower limbs and observed various parameters of ECMO machines to ensure the blood flow. A thoracic surgeon was in charge of the the ECMO tube. Two surgeons were responsible for moving the waist and buttocks, standing on both sides of the patient. The nurse in operating room supervised the unobstructed infusion pipeline and observed various parameters of the monitor on the infusion side. After the anesthesiologist issued the order, the team successfully changed the patient’s position to the right side without any adverse reactions.
Airway management
Lung function recovery was the key to the success of this operation, so nursing care should focus on airway management. Expert consensus on perioperative airway management in thoracic surgery (2012 edition) pointed out that airway inflammation was a key link of postoperative pulmonary complications, and was very important to formulate all-round prevention of pulmonary complications during the perioperative process [10]. However, respiratory hypofunction was a challenge after the left pneumonectomy: (1) The “conveyor belt” of the tracheal mucosa-mucus system of the patient was inhibited, which affected the discharge of respiratory secretions; (2) It was easy for blood to flow into bronchus during tracheal anastomosis; (3) Bronchial anastomotic edema after the operation blocked secretion discharge. (4) The disappearance of normal cough reflex after removing the carina, and the sputum tended to accumulate in the airway, and sputum drainage became difficult [11, 12]. Therefore, timely removal of respiratory secretions, resolution of early excretion of sputum, and maintenance of airway patency were critical points of postoperative care. After the operation, the patient was transferred to ICU with a ventilator. The ventilator mode MAQUET was changed to PS/CPAP (personality support/Continuous Positive Airway Pressure), FiO2 (Fraction of inspiration O2) 35%, PEEP (positive end-expiratory pressure) 5cm H2O. Fiberoptic bronchoscopy was performed at the bedside on the first day after the operation. A blood scab was found at the distal end of the tracheal intubation and the tracheal mucosa. After suction, the bronchial was unobstructed, and the tracheal anastomosis was fine (Fig. 3). Besides, a small amount of bloody viscous secretion and brown secretion were extracted from the right bronchus.
The patient was transferred to the general ward of thoracic surgery after removing the tracheal cannula. During the COVID-19 (Corona Virus Disease 2019) pandemic, it was necessary to offer single room isolation for the patient to prevent respiratory complications. The patient was guided to implement respiratory function training, while under oxygen therapy via a nasal catheter. According to the ancient medical theory of traditional Chinese medicine, it was useful to pat the back to promote cough and expectoration at 07: 00, 11: 00, and 19: 00, because these time points were most likely to produce sputum [13]. Atomization inhalation, cough relieving, and phlegm eliminating drugs were applied according to the doctor’s advice. On the third day after surgery, the patient showed an invalid and weak cough, and complained of chest tightness, shortness of breath (SpO2 was 88%), caused by the sputum retention and sticky sputum in the small trachea. The respiratory therapist immediately aspirated sputum through bedside fiberoptic bronchoscopy to remove respiratory secretions and relieve the symptoms of the patient.
Fluid management
Fluid management was a challenge for patients after operation, in order to maintain stable circulation, ensure organ perfusion, avoid or reduce pulmonary edema, and reduce the burden on heart and lungs. Appropriate restriction of liquid intake was beneficial to improve postoperative oxygenation and promote the recovery of lung function [14]. Swartz et al. [15] reported that the mortality of cardiopulmonary complications was only 2.6% when the fluid volume was less than 1000 ml in the first 12 h after the operation. When the fluid volume exceeded 1000 ml, the mortality rose sharply to 17.3%. The patient received 1095 ml of intravenous infusion within 24 h on the first postoperative day, with a total output of 1270 ml (820 ml of urine and 450 ml of right thoracic drainage) and a total balance of − 175 ml. The excessive intravenous infusion might result in pulmonary edema, whereas insufficient volume might lead to tissue hypoperfusion. We strictly controlled and stabilized the infusion, and the pump speed was set to 100 ml/h. The patient suffered from arrhythmia due to low blood volume with a heart rate of 148 beats/min, then amiodarone injection of 0.3 g and 5% glucose injection of 44 ml were pumped with a micropump of 7 ml/h rate. The patient’s heart rate recovered to 106 beats/min 30 min later. Amiodarone was given last for 7 days after surgery. The urine volume was monitored and maintained at 0.5 ~ 1.0 ml/kg by a comprehensive assessment of the patient’s previous blood pressure level and effective circulation rate. Moreover, nurses evaluated and managed the patient’s fluid balance and effective circulation volume per shift to ensure the fluid intake and output balance or relative negative balance to minimize pulmonary edema [16].
Nutrition support
Tumors consumption, surgical stimulation and increased postoperative consumption all could cause nutritional problems of patients [17,18,19]. The patient was vulnerable to malnutrition. At admission day, the NRS 2002 score of the patient was 1 point. On the 2nd to 10th day of admission, nutritional indicators such as red blood cells hemoglobin, total protein, albumin, etc. were in the normal range, but there was a downward trend (Fig. 4). Parenteral nutrition support was given according to the doctor’s advice. The patient was able to tolerant of surgery, although there existed a slight nutritional risk.
After the operation, NRS2002 score of the patient was 3 point, which related to the restriction of fluid intake, negative balance, and limited intravenous nutrition supplement after left lung resection. The patient stayed in bed for a long time, resulting in poor body activity and gastrointestinal peristalsis, and inadequate diet. The medical care team and nutritionists had jointly formulated the patient’s postoperative diet and nutrition plan, evaluated the gastrointestinal function and adjusted the diet plan dynamically. Relating drugs were given to regulate the intestinal flora and to facilitate the recovery of gastrointestinal function. Nutritional assistance was also supported which included parenteral and oral nutrition, such as human albumin and semi-liquid digestible food. The nurse auscultated bowel sounds per shift and observed gastrointestinal symptoms. Until discharge, the nutritional status of the patient was stable; the results of the postoperative blood test are shown in the figure below (Fig. 5).
Psychosocial support
The diagnosis and treatment of cancer are stressful events, patients might face fears, uncertainties, distress, and psychosocial needs [20]. Among patients experiencing severe distress, 10% ~ 50% of them reported that their treatment results and quality of life were affected [21]. The patient and his families had anxiety and depression, so their psychosocial support was the focus of nursing [22]. Due to the complexity and uncertainty of the operation, patients and their families are seriously anxious during the perioperative period. Psychological counseling was provided at different stages, including mindfulness decompression [23]. Psychological experts consulted the family members to know their current perplexity and proving them the psychological counseling and positive incentives [24]. Gradually the patient gained confidence in the treatment and actively cooperated.