Robotic surgery is considered as the future of surgery amongst the entire medical fraternity; owing to its rapid development, easy adaptations, and the impact that it has made to existing laparoscopic procedures in the last two decades.
The driving force that ultimately led to the developments in the field of laparoscopy was derived from the collaboration between NASA’s Ames Research Centre and researchers from Stanford and was based on the concept of telerobotic surgery. In 1990, this idea got commercialized, and Computer Motion, USA, designed and developed a robotic platform called the Automated Endoscopic System for Optimal Positioning (AESOP), which combined the telemanipulator with a foot pedal [11, 12]. Further modifications in the system led to the launch of the Zeus operating system in the markets in 1998 that was originally designed for cardiac surgery but later was found extending to other surgeries as well [12,13,14,15]. Around the same time, in the late 1990s the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, California) was introduced and in 2000 it became the first robotic surgical system to be approved by the FDA for general laparoscopic surgery (i.e., for gallbladder disease and gastroesophageal reflux). It is the only robotic surgical system to be used nowadays around the globe and represents a 3–4 armed system with a central endoscope holding a binocular lens providing a 3-dimensional (3D) view of the surgical field. However, the most striking feature of this surgical system is the EndoWrist technology, capable of 7 degrees of freedom, thus replicating the mobility like that of a human hand [10, 16]. This allows surgeons to perform complex minimally invasive surgical procedures with high precision and accuracy. Robotic surgery has thus made spectacular progress in handling even difficult situations related to manipulating blood vessels that are most vulnerable in converting an endoscopic surgery to an open one.
Robotically assisted surgery is considered feasible and safe technique reducing the risk of catastrophic events even in high-risk cases such as the elderly, or those with comorbidities. Furthermore, it offers several advantages over conventional laparoscopic surgery, such as superior 3D vision, hinged and flexible instruments, increased range of movement, elimination of fulcrum effect, tremor free image, and ergonomic positioning for the surgeon, thereby translating to precision surgery and improved outcomes in patients [17]. Robotic surgeries have therefore been applied to various fields such as urology [18], gynecological conditions [19], and recently several thoracic surgeons have also adopted r-VATS as an option for pulmonary resections and lobectomies [10, 20,21,22]. One of the advantages of r-VATS over VATS is for the resection of mediastinal lesions, especially thymectomy, as the robot offers easy access to even the tight confined spaces of the anterior and posterior mediastinum [23].
All the r-VATS procedures in our study were performed using da Vinci’s Si robotic system (manufactured by Intuitive Surgicals, USA). For better access to every part of the surgical site, it is very important to place the trocars (ports) appropriately. Numerous surgeons using r-VATS across the globe and even the product manufacturer recommend placing four out of five trocars aligned in the 8th ICS, and the fifth assistant trocar at 1 or 2 lower ICS. Cerfolio et al. (2011) have described the placement of five trocars in the 7th ICS in a linear fashion as effective [23]. However, we are among the very few surgeons who have modified this trocar placement by using only 4 trocars positioned in a triangular fashion (as in c-VATS) and found it very effective (Figs. 2 and 4). Abiding by the working principle of robot arms, the angle created after the positioning of trocar 1, the camera, and trocar 2 was ≥90o in our study. The distance between the position of the trocars, including the wound retractor, was more than 4 fingers wide (Fig. 5). This triangular principle provided a fast and appropriate technique for trocar placement because it allowed the robot arms to freely approach all the intrathoracic lesions easily without interfering with the assistant port. Besides, it also supported the easy use of the harmonic shear device (as used in c-VATS) in the robotic arm1 (the surgeon’s dominant hand) (Fig. 6). Today, harmonic shear is rarely used by surgeons for robotic surgeries as it is a straight device without a flexible wrist and cannot be folded like other robotic tools. Furthermore, we took advantage of the 4th port (assistant port) and used it as a working incision (just similar to that in VATS). This port, therefore, helped to serve both retracting and assisting purposes. This further eliminated the need for 5th port in our procedure, unlike in current robotic thoracoscopic surgeries. Additionally, the reduction of one port (4 instead of 5) helped to widen the distances between the ports, making it convenient for robot arms operation. In particular, it helped the assistant surgeon to be comfortable in offering supporting actions like stapling or dissection during the operation.
The triangular incision strategy has been earlier reported for r-VATS lobectomy [24], but we hereby report the application of this approach to all our robotic surgeries, including lobectomy, wedge resection, thymectomy, mediastinal tumor resection, pneumonectomy, transthoracic esophagectomy, esophageal cyst resection or esophageal diverticulum repair, and diaphragm plication. Our study demonstrated the peri- and postoperative outcomes of r-VATS in a total of 142 patients undergoing different surgical operations. Median operative time to surgery was 110 min (range = 60–280 min) and was found to be better than in previous R-VAT studies while the median length of hospital stay for our study cohort was 5 days (range 3–12 days) and was found comparable to the earlier reports [10, 25]. Conversion to open thoracic surgery was required only in 3 (2.1%) patients; 2 (1.4%) of pneumonectomy and 1 (0.70%) of mediastinal tumor resection. This may have happened because of pneumonectomy cases, generally being the toughest ones to operate. Moreover, it took us some time to familiarize with the robotic procedure in the first two cases. This conversion rate is also likely to decrease as more experience is accumulated among the surgeons. No postoperative complications and death were reported in our study. These results are equivalent or comparable to prior c-VATS studies [26,27,28].
In lobectomy cases, we used a wound retractor for the assistant port in lateral decubitus position, eliminating the need for CO2 insufflation whilst relying on one lung ventilation. This provided enough room and helped us to dissect the pulmonary vessel comfortably as CO2 insufflation would have compressed the pulmonary vessel to a smaller size. For surgeries in the anterior mediastinum in the supine position, while the trocar for the camera was placed just below the sternum xiphoid, trocars for arm 1, 2, and assistant were put bilaterally. CO2 insufflation by two- lung ventilation process was used in these cases, and this approach was found to provide more space in the anterior mediastinum as compared to semi-lateral, one-lung ventilation approach. Similarly, in some of our earlier cases, we used semi-lateral one-lung ventilation access but soon switched to a subxiphoid approach [29, 30].
Robotic surgeries such as r-VATS may be far superior to c-VATS performed by humans, but similarly, like humans, robotic surgical systems may be made to work very well with instruments without wrist (such as the harmonic shear). Nowadays, many thoracic surgeons are keen to learn robotic systems and use them for their surgeries. This shift in learning new robotic techniques should be encouraged and supplemented by adequate training in this field. The transition from c-VATS to r-VATS using robots would be a better option for those surgeons who already have good experience in c-VATS background and techniques.