Complicated infective endocarditis (IE) with perivalvular abscess and destruction of the intervalvular fibrous body (IFB) has a high mortality risk and mostly requires emergent or urgent surgery. David et al. [1] reported the technique of aortic valve replacement (AVR), mitral valve replacement (MVR) combined with reconstruction of the IFB, which is known as the Commando procedure. However, a high mortality rate and re-exploration for bleeding were noted in early series, which might be related to the emergent surgical procedure, fragile infected tissue, and difficulty of achieving hemostasis due to inaccessible posterior suture lines. The complicated condition is sometimes inevitable, but we would like to introduce a modified Commando procedure, which may improve surgical exposure, solidify the infected tissue, decrease tension, and transfer the suture line to the anterior aspect for better hemostasis. Here, we describe the cases of 4 patients who underwent reoperation due to prosthetic IE with IFB involvement and the surgical technical modifications we introduced to the origin procedure.
Surgical technique of modified commando procedure
-
1.
Cardiopulmonary bypass was established via the ascending aorta and bicaval cannulation. Custodiol HTK cardioplegic solution was used.
-
2.
Surgical exposure was achieved through oblique aortotomy and an extended transseptal approach. The aortotomy was extended from the noncoronary cusp into the IFB and onto the left atrial roof (Fig. 1a).
-
3.
Inspect the aortic valve area and the mitral valve area. Remove all infected tissues (Fig. 1b), and the remaining margin was treated with glutaraldehyde solution carefully.
-
4.
Reconstruction of the IFB was performed with one diamond-shaped patch of bovine pericardium folded into two triangular shapes (Fig. 1c), one for reconstruction of the interatrial septum and the other for reconstruction of the aortic root.
-
5.
Perform MVR and AVR, suture anchoring at the remaining margin and the new IFB (Fig. 1d & e).
-
6.
Reconstruction of the aortic root and the interatrial septum (Fig. 1f).
-
7.
Another bovine pericardium patch was used for reconstruction of the left atrial roof and right atrium to close the opening of the extended transseptal approach.
-
8.
Weaning cardiopulmonary bypass.
Case
Patient 1
A 46-year-old woman was admitted to our hospital due to intermittent dyspnea on exertion for 2 months and fever for 1 week. She had undergone mitral valve repair and tricuspid valve repair (TVr) 8 years prior due to IE with symptomatic severe mitral regurgitation (MR) and tricuspid regurgitation. Transthoracic echocardiography (TTE) revealed moderate to severe aortic regurgitation (AR), severe MR and vegetation over the anterior mitral leaflet that extended to the left ventricular outflow tract (LVOT). Recurrent IE was diagnosed. Antibiotic therapy was initiated, but intermittent fever persisted, so urgent surgery was arranged.
In the aortic valve area, left-coronary-cusp and noncoronary-cusp perforation with perivalvular abscess formation over the aortic root was observed (Fig. 2a). In the mitral valve area, vegetation was observed on the anterior mitral leaflet extending to the IFB and LVOT (Fig. 2b). Mitral valve and annuloplasty ring were removed (Fig. 2c). The modified Commando procedure was performed during the reoperation.
The postoperative course was uneventful except that a permanent pacemaker (PPM) was implanted for complete heart block. There were no other complications and no restrictions on physical activity after discharge. Follow-up TTE examinations at 1 year and 3 years revealed good valve function, and no paravalvular leakage was noted.
Patient 2
A 41-year-old man was admitted to our hospital for decompensated heart failure. He had undergone MVR and TVr 3 months prior and anal fistulectomy 1 month prior. TTE revealed dislocation of the mitral prosthetic valve and severe right ventricular dysfunction with an ejection fraction of 28%. At surgery, vegetation on the aortic valve, mitral prosthetic valve and IFB was detected. Nearly total dehiscence of the mitral prosthetic valve and posterior atrial-ventricular groove containing rupture was also detected (Fig. 2d). The ruptured atrial-ventricular groove was repaired with one bovine pericardium patch, and the modified Commando procedure was performed. A PPM was implanted postoperatively, and the residual course was uneventful.
Patient 3
A 60-year-old man was admitted to our hospital for heart failure and intracardiac shunt (LVOT to left atrium). He had IE and left medial frontal cerebral infarction and undergone AVR at another hospital 2 weeks prior. In addition, he had been intubated preoperatively due to respiratory failure caused by influenza A infection. During surgery, dehiscence of the aortic prosthetic valve with an annular abscess and vegetation over the aortic root to the mitral valve and one large perforation of the IFB were detected (Fig. 2e). The modified Commando procedure was performed, along with aortic root reconstruction with a metallic valve and gelatin vascular graft and the Cabrol method for coronary ostia reimplantation (Fig. 2f). The postoperative course was prolonged due to preoperative respiratory failure and poor brain infarction-related mobility. A PPM was implanted for heart block. Multiple debridement and muscular flap reconstruction procedures were performed for sternal infection. He was discharged in a wheelchair and has undergone continuous rehabilitation.
Patient 4
An 81-year-old woman was admitted to our hospital for fever and dyspnea for 3 days. TTE revealed aortic valve vegetation with severe AR and severe MR. IE complicated with valvular insufficiency was diagnosed. At surgery, vegetation on the aortic noncoronary cusp, LVOT and IFB, an aortic annular abscess with perforation and mitral valve anterior leaflet perforation were detected. The modified Commando procedure was performed with bioprosthetic valves due to the advanced age of the patient. The postoperative course was smooth, except PPM implantation was performed for heart block.