Our study demonstrates that AMCS used for the treatment of refractory PCCS can lead to good outcomes for a significant number of patients, with 40.7 % surviving to hospital discharge and all surviving patients were graded as either NYHA class I or II at 12 months’ post-discharge. Without AMCS, it is likely that the vast majority of these patients would have died. Ours is also the first multi-centre study of its kind to emerge from the UK and one of the few studies to examine functional outcomes post AMCS utilisation for refractory PCCS.
Recent evidence has demonstrated that modern, continuous-flow AMCS devices, such as the CentriMagR that was used in our centres, can lead to improved survival in patients with PCCS [12–14]. In the largest cohort, Hernandez et al. [3] collated data from 5735 patients who underwent salvage VAD for refractory PCCS. They reported a 54.1 % survival rate to hospital discharge and concluded that VAD is a valuable, life-saving therapeutic manoeuvre. By comparison, the survival rate in our study was lower but firm conclusions are difficult given the low number of patients in our cohort. However, other smaller studies (relative to the Hernandez study) [5, 15–18] all using either ECMO or VAD for refractory PCCS, reported less impressive survival to hospital discharge rates of 24.8 %–37 % and a 5 year survival of 13.7 %–16.9 %. Unfortunately, we do not have long-term survival data as many of the survivors were ultimately discharged from the outpatient clinics when no further medical or surgical interventions were required, hence longer term follow up data post out-patient clinic discharge had not been recorded in the database.
We identified advanced age to be a factor leading to an adverse outcome, although again, owing to our smaller numbers, this did not reach statistical significance. Most (64 %) of the survivors were under 60 years of age. Furthermore, the emergent nature of surgery and pre-existing, preoperative severe left ventricular impairment were also identified as probable factors leading to an adverse outcome.
Evidence suggests that early device implantation [6] and appropriate patient selection through a multidisciplinary team approach is paramount to an optimal outcome [10]. There are no national or local protocols for identifying suitable patients for AMCS with refractory PCCS in Scotland: instead, decisions are based on a case-by-case assessment involving a multidisciplinary team (cardiac surgeon, department head, anaesthetist, and perfusionist) in each of the three hospital sites. We continue to believe that this is the best approach to patient selection rather than a standardised algorithmic approach because it ensures an ethically appropriate decision for the patient whilst optimising the cost-benefit equation. The decision regarding when to initiate AMCS support was made for most patients whilst in theatre in those whom weaning from CPB was not possible, although a few were commenced AMCS whilst in ICU. The time to AMCS and how this correlates to survival is an important variable that regrettably was not consistently recorded in our patient cohort.
AMCS devices are expensive [9, 19, 20] and this, coupled with a potentially prolonged length of stay in ICU, means that cost is an important factor in the decision-making process, particularly within the UK NHS. Indeed, decision-makers have opted to centralise AMCS funding to a restricted number of the larger cardiothoracic centres [21], invariably depriving other units of this potentially life-saving resource. Understandably, this has led to expressions of consternation [21]. In our cohort, the longest duration on AMCS was 33 days (patient 7). This patient was successfully weaned from VA ECMO but died whilst in critical care from a stroke, which may have been a complication from AMCS employment.
The NYHA functional outcomes for our patients were also very positive. Unfortunately, many previous AMCS studies for refractory PCCS do not report such findings, although we did identify two studies, each with similar outcomes to ours. Ko et al. [17] detailed a cohort of 76 patients undergoing ECMO support for refractory PCCS. They reported that all survivors were of NYHA classes I or II at 32 +/− 22 month follow-up. Pennington et al. [15] reported on refractory PCCS support with VAD and found that all survivors were “leading active lives”. In 72.7 % of their survivors, ejection fraction had normalized on follow-up echocardiography.
Clearly, given that we only identified 27 patients undergoing AMCS over a 20-year period, and despite our pooled hospital case volume, we acknowledge that the Scottish approach to institution of AMCS for refractory PCCS has been relatively conservative. This can partly be explained by the fact that salvage AMCS was not employed in the west of Scotland until 2007. Also, our general approach to institution of AMCS dictates that such modalities are instituted only if there is a reversible cause of the cardiogenic shock, which is reflected by our reasonable survival rate. Other possible reasons for underutilization may include: scarcity of resources, prohibitive costs, and lack of consistent evidence for the benefit of AMCS.
The decision to institute AMCS must also be balanced with due consideration of the associated risks of this invasive modality, many of which are potentially life-threatening. Common device-related complications include: haemorrhage, thrombus formation and embolization, stroke, device-related infection, limb ischaemia, and multi-organ dysfunction syndrome/failure [1, 2, 15, 17, 22, 23]. In our cohort, the most common procedure-related complication was major haemorrhage. Renal failure requiring renal replacement therapy, stroke, and peripheral limb ischaemia also occurred with comparable rates to previous studies.
Given the scarcity of donor hearts in the UK, research continues to focus on implantable AMCS devices as a bridge to recovery, bridge to transplant, or as destination therapy [19]. However, none of our patients were transplanted during the study period and none had implantable long-term VADs.
Finally, this study is limited by the small number of subjects (as previously discussed) and its retrospective nature. It nevertheless reaffirms the findings of our previous study, which reported a good survival rate and acceptable quality of life for patients who received AMCS for refractory PCCS and survived to hospital discharge.