In our study, we investigated a subset of gene polymorphisms known from other investigations as suspects in the development of CAD. Occurrence of cardiac adverse events after primary CABG was significantly influenced by genetic polymorphisms; among the seven evaluated polymorphisms ApoE and eNos variants had the highest impact on reoperations and reinterventions.
ApoE Polymorphism
Several studies focused on the effects of ApoE after cardiopulmonary bypass and reported a higher incidence of inflammation [8] and nephropathy [13] in patients with the E4 allele; depending on the trial more or less neurological sequelae were seen with the E2 allele [14, 15]. In Kuukasjärvi et al. [16] investigated the ApoE E4 allele and found, in contrast to most of the studies, this polymorphism not to be a predictor for reoperation. Interestingly, in our study patients without the most frequent allele E3, thus only having the risk alleles E2 and E4, had a more aggressive type of CAD. In regard to the total population, there is no other gene product, which has such a big influence on the individual cholesterin level such as ApoE. Especially the ε4 allele is increasing the plasma level of LDL. In various investigations ApoE was associated with a higher incidence of atherosclerosis. Baroni et al conducted a study with 6 polymorphisms influencing the lipid system (ApoE, ApoAI, ApoCIII, ApoB, lipoprotein lipase LPL und LIPC [4]. One hundred and two patients with diagnosed CAD were enrolled and 104 healthy patients served as controls. Significant difference between CAD and healthy patients could be demonstrated for Apolipoprotein E, ApoB and HL. ApoE ε4 allele was associated with a manifest CAD. Results of our study were similar: patients with deletion of the most common allele ε3 that means they carry the rare combination of either ε2/4 or ε4/4 (isoform ε2/2 is extremely rare) had more frequently to undergo a reintervention. After incidence is so low (2–3% of general population), evaluation is limited. Therefore, a higher number of patients would be desirable.
eNOS 4ab
The investigated eNOS variant has been associated with a higher susceptibility to coronary lesions in smokers and NO metabolites were 20% decreased in patients with the 4aa variant [5]. For endothelial NOS at least 4 frequent polymorphisms (G894T, Glu298Asp, T786C, and the one used in this study) are well established and described to be risk factors for CAD. The argument of having no specific hypothesis to investigate just one and not all other polymorphisms is valid. Further more, some authors see differences in subgroups, i.e. smokers vs. non smokers and young adults. These oppositional results are frequently seen in genetic studies and may be due to the multi factorial origin of the disease. For instance, in japanese and caucasians similar patterns of eNOS alleles were observed [17], but in afroamericans the incidence is generally much lower. Especially environmental factors are difficult to record such as smoking, which is particularly important in eNOS. In our study, the a allele of eNOS 4ab polymorphism was associated with a significantly higher risk for reintervention and recurrent symptoms.
LIPC C202G
Enzyme activity of hepatic lipase plays a major role in regulating the lipid metabolism. In the above mentioned study from Baroni et al. in carriers of the g allele of C202G mutation, a decreased level of HDL cholesterol and increased level of triglycerides was observed [4]. Interestingly, the authors found another independent factor regarding clinical endpoints: carrier of homo- or heterozygous g allele had significantly more frequently a second adverse event. Also our results demonstrate a similar course: patients with homozygous expression of the g allele (n = 48) needed more frequently a reoperation. For this mutation, Murtomaki et al, demonstrated a binding imbalance towards additional LIPC polymorphisms such as L334F, T457T and C480T). Last is related to a low LIPC activity in CAD patients [18]. That means that C202G mutation is a simple marker for additional LIPC polymorphisms and their mutations.
Recently Taylor and associates [19] reported on the influence of lipoprotein lipase locus on the progression of atherosclerosis in coronary artery bypass grafts and identified the LPL-HINDIII 2/2 genotype as an independent risk factor.
Risk Profile
After single mutations had a relatively low prevalence in our limited patient cohort and CAD is a multifactorial disease we constructed a gene risk profile according to the definitions. It was a combination of the alleles with the highest incidence of either one of clinical endpoints: Included was hetero- or homozygous a-allele of eNOS 4ab polymorphism, because patients showed a significantly higher risk to get a rentervention or recurrent symptoms. Regarding the ApoE they had to carry ε4 allele, that means ε2/4 or ε4/4, as it is considered to be potentielly atherogenous, was we could also demonstrate. Homozygous carriers of hepatic lipase were prone to undergo a reoperation and recurrent symptoms. That's why part of the risk gene profile was homozygous expression of the G allele. Homozygous expression of CETP gene polymorphism was included. Additionally, hetero- or homozygous variants of G20210A mutation was chosen, because only 50 and 0% carriers of these variants were free from recurrent symptoms after 10 and 15 years, respectively. However, a simple gene risk profile constructed out of 7 randomly chosen polymorphisms was more predictive for the advancement of CAD than any cluster of classical risk factors.
Certainly medical therapy, particularly lowering of low-density lipoprotein cholesterol levels, has been proven to reduce the advancement of CAD after CABG [20]. Due to the design of our retrospective study, we were unable to prove the beneficial effects of medical therapy, because therapy after primary CABG was determined by the cardiologist and patients with recurrent symptoms received intensified medical therapy. In the investigated patient's cohort 87% received Aspirine, 70% were given beta blockers, 82% of patients received statins, 35% ACE inhibitors and 24% took calcium antagonists postoperatively. Likewise, the role of classical risk factors on the CAD progression is difficult to interpret. Risk factors at the time of primary CABG were medically treated as described above; patients stopped smoking and started training programs. Therefore, these classical risk factors lost partially their predictive value. Obviously, we investigated only long-term survivors of CABG surgery, who were willing to cooperate. This selection bias may also limit our results.
Knowledge of gene polymorphisms in the era of genomics and their influence on outcome in cardiac surgery is rapidly growing. However, most studies investigated the acute effects of polymorphisms outcome during the postoperative phase. Data on the progression of CAD after primary CABG is rare.
This study is only preliminary, because of its limitations in patient sample size as well as number and choice of investigated polymorphisms. More investigations are warranted and will most likely improve the predictive value of polymorphism tests. We proved the concept, that risk stratification by a simple gene test for the future advancement of CAD after primary CABG is possible. The concept is intriguing, because the detected gene variants give clues to the individual pathophysiology in every single patient in this multifactorial disease [18]. Therefore, this cheap diagnostic tool may hopefully lead to an individualized secondary prevention after primary CABG.